Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
2.
Neuroendocrinology ; : 1, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852579

RESUMEN

INTRODUCTION: Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition. METHODS: The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit and 41 healthy controls, all females. RESULTS: We found that in both study groups, approximately 40% of serum α-MSH was reversibly bound to IgG and that levels of α-MSH-reactive IgG but not of α-MSH peptide in patients with AN were low at hospital admission but recovered 1 year later. Total IgG levels were also low at admission. Moreover, BMI-standard deviation score correlated positively with α-MSH IgG in both groups studied but negatively with α-MSH peptide only in controls. Significant correlations between the abundance of specific bacterial taxa in the gut microbiota and α-MSH peptide and IgG levels were found in both study groups, but they were more frequent in controls. CONCLUSION: We conclude that IgG in the blood plays a role as an α-MSH-binding protein, whose characteristics are associated with BMI in both patients with AN and controls. Furthermore, the study suggests that low production of α-MSH-reactive IgG during the starvation phase in patients with AN may be related to altered gut microbiota composition.

3.
Int J Eat Disord ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934721

RESUMEN

OBJECTIVE: Patients with anorexia nervosa (AN) are often anxious, display inflexible behavior and disrupted reward processing. Emerging evidence suggests that gut dysbiosis in patients contributes to the disease phenotype and progression. METHODS: In a preclinical study, we explored whether AN-derived microbiota impacts cognitive flexibility, anxiety, and dopamine signaling using fecal microbiota transplantation (FMT) in tyrosine hydroxylase-cre rats. We performed probabilistic reversal learning task (PRLT) at the baseline, after antibiotic treatment, and following FMT from patients with AN and controls. We assessed flexible behavior, task engagement, and ventral tegmental area (VTA) dopamine signaling during and in the absence of reward. Furthermore, anxiety-like behavior was evaluated with open field (OF) and elevated plus maze (EPM) tests. RESULTS: Neither antibiotic-induced dysbiosis nor AN FMT led to significant alterations in the number of reversals or lever press strategies after reinforced or nonreinforced lever presses (win and lose-stay) in the PRLT. However, the number of initiated trials decreased after antibiotic treatment while remaining unchanged after FMT. No significant differences were observed in VTA dopamine activity, anxiety measures in the OF and EPM tests. Microbiome analysis revealed limited overlap between the microbiota of the donors and recipients. DISCUSSION: No evidence was found that the microbiota of patients compared to controls, nor a depleted microbiome impacts cognitive flexibility. Nonetheless, antibiotic-induced dysbiosis resulted in reduced task engagement during the PRLT. The relatively low efficiency of the FMT is a limitation of our study and highlights the need for improved protocols to draw robust conclusions in future studies. PUBLIC SIGNIFICANCE: While our study did not reveal direct impacts of AN-associated gut microbiota on cognitive flexibility or anxiety behaviors in our preclinical model, we observed a decrease in task engagement after antibiotic-induced dysbiosis, underscoring that the presence of a gut microbiome matters. Our findings underscore the need for further refinement in FMT protocols to better elucidate the complex interplay between gut microbiota and behaviors characteristic of anorexia nervosa.

4.
Nutrients ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38892530

RESUMEN

Anorexia nervosa (AN) is a severe eating disorder that predominantly affects females and typically manifests during adolescence. There is increasing evidence that serum cytokine levels are altered in individuals with AN. Previous research has largely focused on adult patients, assuming a low-grade pro-inflammatory state. The serum levels of the cytokine tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6 and IL-15, which are pro-inflammatory, were examined in 63 female adolescents with AN and 41 age-matched healthy controls (HC). We included three time points (admission, discharge, and 1-year follow-up) and investigated the clinical data to assess whether the gut microbiota was associated with cytokine alterations. Relative to the HC group, serum levels of IL-1ß and IL-6 were significantly lower during the acute phase (admission) of AN. IL-1ß expression was normalised to control levels after weight recovery. TNF-α levels were not significantly different between the AN and HC groups. IL-15 levels were significantly elevated in patients with AN at all time points. We found associations between cytokines and bodyweight, illness duration, depressive symptoms, and the microbiome. In contrast to most findings for adults, we observed lower levels of the pro-inflammatory cytokines IL-1ß and IL-6 in adolescent patients, whereas the level of IL-15 was consistently increased. Thus, the presence of inflammatory dysregulation suggests a varied rather than uniform pro-inflammatory state.


Asunto(s)
Anorexia Nerviosa , Citocinas , Microbioma Gastrointestinal , Humanos , Anorexia Nerviosa/sangre , Anorexia Nerviosa/microbiología , Femenino , Adolescente , Citocinas/sangre , Estudios de Seguimiento , Alta del Paciente , Estudios de Casos y Controles , Interleucina-1beta/sangre , Factor de Necrosis Tumoral alfa/sangre , Admisión del Paciente , Interleucina-6/sangre
5.
Pharmacol Res ; 205: 107231, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815878

RESUMEN

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Asunto(s)
ADN Mitocondrial , Ratones Endogámicos C57BL , Animales , ADN Mitocondrial/genética , Microbioma Gastrointestinal , Ratones , Piel/metabolismo , Piel/microbiología , Piel/patología , Dermatitis/inmunología , Dermatitis/microbiología , Dermatitis/genética , Dermatitis/tratamiento farmacológico , Dermatitis/metabolismo , Inflamación/genética , Inflamación/inmunología , Modelos Animales de Enfermedad , Masculino , Vida Libre de Gérmenes , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Psoriasis/genética , Ciego/microbiología , Enfermedad Crónica , Femenino
6.
Sci Rep ; 14(1): 11021, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744972

RESUMEN

For the past 15 years, the proportion of honey bee hives that fail to survive winter has averaged ~ 30% in the United States. Winter hive loss has significant negative impacts on agriculture, the economy, and ecosystems. Compared to other factors, the role of honey bee gut microbial communities in driving winter hive loss has received little attention. We investigate the relationship between winter survival and honey bee gut microbiome composition of 168 honey bees from 23 hives, nine of which failed to survive through winter 2022. We found that there was a substantial difference in the abundance and community composition of honey bee gut microbiomes based on hive condition, i.e., winter survival or failure. The overall microbial abundance, as assessed using Quantitative Microbiome Profiling (QMP), was significantly greater in hives that survived winter 2022 than in those that failed, and the average overall abundance of each of ten bacterial genera was also greater in surviving hives. There were no significant differences in alpha diversity based on hive condition, but there was a highly significant difference in beta diversity. The bacterial genera Commensalibacter and Snodgrassella were positively associated with winter hive survival. Logistic regression and random forest machine learning models on pooled ASV counts for the genus data were highly predictive of winter outcome, although model performance decreased when samples from the location with no hive failures were excluded from analysis. As a whole, our results show that the abundance and community composition of honey bee gut microbiota is associated with winter hive loss, and can potentially be used as a diagnostic tool in evaluating hive health prior to the onset of winter. Future work on the functional characterization of the honey bee gut microbiome's role in winter survival is warranted.


Asunto(s)
Microbioma Gastrointestinal , Estaciones del Año , Animales , Abejas/microbiología , Microbioma Gastrointestinal/genética , Virginia , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
7.
J Appl Clin Med Phys ; 25(7): e14370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661097

RESUMEN

PURPOSE: To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac. METHOD: Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter. The phantom was irradiated with 1 × 1, 3 × 3, 5 × 5, 10 × 10, and 22 × 22 cm2 fields, gantry at 90°. Out-of-field doses (OFDs) deposited by electron streams generated at the entry and exit surface of the angled phantom were measured on the surface of solid water slabs placed ±20.0 cm from the isocenter along the x-direction. A high-resolution MOSkin™ detector served as a benchmark due to its shallower depth of measurement that matches the International Commission on Radiological Protection (ICRP) recommended depth for skin dose assessment (0.07 mm). MOSkin™ doses were compared to EBT3 film, OSLDs, a diamond detector, and the TPS where the experimental setup was modeled using two separate calculation parameters settings: a 0.1 cm dose grid with 0.2% statistical uncertainty (0.1 cm, 0.2%) and a 0.2 cm dose grid with 3.0% statistical uncertainty (0.2 cm, 3.0%). RESULTS: OSLD, film, the 0.1 cm, 0.2%, and 0.2 cm, 3.0% TPS ESE doses, underestimated skin doses measured by the MOSkin™ by as much as -75.3%, -7.0%, -24.7%, and -41.9%, respectively. Film results were most similar to MOSkin™ skin dose measurements. CONCLUSIONS: These results show that electron streams can deposit significant doses outside the primary field and that dosimeter choice and TPS calculation settings greatly influence the reported readings. Due to the steep dose gradient of the ESE, EBT3 film remains the choice for accurate skin dose assessment in this challenging environment.


Asunto(s)
Electrones , Imagen por Resonancia Magnética , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Aceleradores de Partículas/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Radioterapia de Intensidad Modulada/métodos , Piel/efectos de la radiación , Método de Montecarlo
8.
Front Microbiol ; 15: 1347422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476944

RESUMEN

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

9.
Gut Microbes ; 16(1): 2304158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38294867

RESUMEN

There is mounting evidence regarding the role of gut microbiota in anorexia nervosa (AN). Previous studies have reported that patients with AN show dysbiosis compared to healthy controls (HCs); however, the underlying mechanisms are unclear, and data on influencing factors and longitudinal course of microbiome changes are scarce. Here, we present longitudinal data of 57 adolescent inpatients diagnosed with AN at up to nine time points (including a 1-year follow-up examination) and compare these to up to six time points in 34 HCs. 16S rRNA gene sequencing was used to investigate the microbiome composition of fecal samples, and data on food intake, weight change, hormonal recovery (leptin levels), and clinical outcomes were recorded. Differences in microbiome composition compared to HCs were greatest during acute starvation and in the low-weight group, while diminishing with weight gain and especially weight recovery at the 1-year follow-up. Illness duration and prior weight loss were strongly associated with microbiome composition at hospital admission, whereas microbial changes during treatment were associated with kilocalories consumed, weight gain, and hormonal recovery. The microbiome at admission was prognostic for hospital readmission, and a higher abundance of Sutterella was associated with a higher body weight at the 1-year follow-up. Identifying these clinically important factors further underlines the potential relevance of gut microbial changes and may help elucidate the underlying pathophysiology of gut-brain interactions in AN. The characterization of prognostically relevant taxa could be useful to stratify patients at admission and to potentially identify candidate taxa for future supplementation studies aimed at improving AN treatment.


Asunto(s)
Anorexia Nerviosa , Microbioma Gastrointestinal , Microbiota , Humanos , Adolescente , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Aumento de Peso
10.
J Med Radiat Sci ; 71(1): 114-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37740640

RESUMEN

INTRODUCTION: The magnetic resonance linear accelerator (MRL) combines both magnetic resonance imaging and a linear accelerator, allowing for daily treatment adaptation. This study aimed to assess the impact of radiologist-delivered training in magnetic resonance (MR) contouring of relevant structures within the male pelvis. METHODS: Two radiation oncologists, two radiation oncology registrars and seven radiation therapists completed contouring on 10 male pelvis MR datasets both pre- and post-training. A 2-hour MR anatomy training session was delivered by a radiologist, who also provided the 'gold standard' contours. The pre- and post-training contours were compared against the gold standard with Dice similarity coefficient (DSC) and Hausdorff distances calculated; and the pre- and post-confidence scores and timing were compared. RESULTS: The improvement in DSC were significant in prostate, rectum and seminal vesicles, with a post-training median DSC of 0.87 ± 0.06, 0.92 ± 0.04 and 0.80 ± 0.14, respectively. The median Hausdorff improved with a median of 1.46 ± 0.78 mm, 0.52 ± 0.32 mm and 1.11 ± 0.86 mm for prostate, rectum and seminal vesicles, respectively. Bladder concordance was high both pre- and post-training. Urethra contours improved post-training, however, remained difficult to contour with a median post-DSC of 0.51 ± 0.24. Overall, confidence scoring improved (P < 0.001) and timing decreased by an average of 4.4 ± 16.4 min post-training. CONCLUSION: Radiologist-delivered training improved concordance of male pelvis contouring on MR datasets. Further work is required in the identification of urethra on MRs. These findings are of importance in the MRL adaptive workflow.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Pelvis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Oncólogos de Radiación
11.
Gut Microbes ; 15(2): 2286675, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059748

RESUMEN

Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Escherichia coli/genética , Relevancia Clínica , Enfermedades Inflamatorias del Intestino/genética , Bacterias , Inflamación , Genotipo
12.
Front Immunol ; 14: 1212551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022583

RESUMEN

Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the elderly. An altered skin microbiota in BP was recently revealed. Accumulating evidence points toward a link between the gut microbiota and skin diseases; however, the gut microbiota composition of BP patients remains largely underexplored, with only one pilot study to date, with a very limited sample size and no functional profiling of gut microbiota. To thoroughly investigate the composition and function of the gut microbiota in BP patients, and explore possible links between skin conditions and gut microbiota, we here investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering from BP and 66 age-, sex-, and study center-matched controls (CL) with non-inflammatory skin diseases (132 total participants), using 16S rRNA gene and shotgun sequencing data. Decreased alpha-diversity and an overall altered gut microbial community is observed in BP patients. Similar trends are observed in subclassifications of BP patients, including first diagnoses and relapsed cases. Furthermore, we observe a set of BP disease-associated gut microbial features, including reduced Faecalibacterium prausnitzii and greater abundance of pathways related to gamma-aminobutyric acid (GABA) metabolism in BP patients. Interestingly, F. prausnitzii is a well-known microbiomarker of inflammatory diseases, which has been reported to be reduced in the gut microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays multiple roles in maintaining skin health, including the inhibition of itching by acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2 levels, and maintaining skin elasticity by increasing the expression of type I collagen. These findings thus suggest that gut microbiota alterations present in BP may play a role in the disease, and certain key microbes and functions may contribute to the link between gut dysbiosis and BP disease activity. Further studies to investigate the underlying mechanisms of the gut-skin interaction are thus clearly warranted, which could aid in the development of potential therapeutic interventions.


Asunto(s)
Microbioma Gastrointestinal , Penfigoide Ampolloso , Humanos , Anciano , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S/genética , Susceptibilidad a Enfermedades , Proyectos Piloto , Ácido gamma-Aminobutírico
13.
Phys Med Biol ; 68(20)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37699399

RESUMEN

Objective.Dose due to the electron streaming effect (ESE) is a significant contribution to out-of-field dose on the Elekta Unity MR-Linac. The aim of this work is to provide a systematic comparison of calculated and measured streaming dose for this system.Approach.Beams 1.0 × 1.0 cm2to 5.0 × 5.0 cm2, gantry 90.0°, 1000 MU, were incident on an in-house phantom. At the beam entrance and exit surfaces of the phantom, ESE was generated in theY-direction (IEC 61217). EBT3 film, orientated within theX-Zplane and at 14.0 mm depth in a solid water block, was used to determine ESE dose 5.0 cm beyond the phantom. The experimental arrangement was simulated in the Monaco v5.4 treatment planning system (TPS), utilising a CT phantom dataset with differing relative electron densities (RED) for the surrounding air. Horizontal (Xdirection) and vertical (Zdirection) film dose profiles were compared to the corresponding TPS profiles.Main results. For each field, the maximum ESE dose was observed at the beam exit, the magnitude of which decreases with decreasing field size. For the 5.0 × 5.0 cm2field, the exit and entry ESE doses were 19.6% and 7.0% of theDmaxdose to water, respectively. Across horizontal profiles, differences (simulated-measured) were reduced with smaller fields and lower RED. The maximum absolute profile difference was 1.7% of theDmaxdose to water for optimal RED and isocentre location. In vertical profiles an offset consistent with the Lorentz force was observed relative to theX-Yisoplane.Significance. For the fields investigated, maximum absolute differences (simulated-measured) ≤ 5.2% occurred in peak regions of ESE, at the beam entrance and exit from the phantom. Generally, there is good agreement between Monaco simulated and measured ESE. Simulated out-of-field dose is sensitive to the RED assigned to air structures and unforced RED optimises out-of-field dose calculation accuracy.


Asunto(s)
Electrones , Aceleradores de Partículas , Método de Montecarlo , Fantasmas de Imagen , Agua , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica
15.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414930

RESUMEN

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Asunto(s)
Proteínas Hedgehog , Neuropilina-1 , Ratones , Animales , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Bacterias/metabolismo
16.
Anim Microbiome ; 5(1): 31, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264412

RESUMEN

BACKGROUND: Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS: Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS: Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.

17.
Commun Biol ; 6(1): 289, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934156

RESUMEN

The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.


Asunto(s)
Microbiota , Platelmintos , Animales , Platelmintos/fisiología , Regeneración/fisiología , Periodicidad
18.
Curr Microbiol ; 80(3): 101, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759384

RESUMEN

Most bacterial identification methods require extensive culturing, strain purification and DNA extraction protocols. This leads to additional expenses and time lags when isolating specific bacteria from complex microbiological ecosystems. This study aimed to develop a fast and robust method for identification of lactobacilli, bifidobacteria and Bacteroides in human faecal samples. Bacteria from faecal samples were cultured anaerobically on selective media. Sonication-based DNA extraction was performed, followed by almost complete 16S rRNA gene polymerase chain reaction amplification and MinION sequencing with the Flongle adapter. Sequence analysis was performed using NanoCLUST, while RStudio was used for graphics. For 110 of the 125 colonies investigated, 100% of reads were attributed to a single species, while the remaining 15 colonies consisted of mixtures of up to three different species. The proposed bacterial identification method is advantageous for isolating particular bacteria for which there are no exclusively selective media, as it avoids lengthy colony purification and DNA purification methods, and yields a quick colony identification with high accuracy. Therefore, this method can be used for directly screening for pure cultures of target microorganisms and is suitable for the identification of bacteria in culturomics studies.


Asunto(s)
Nanoporos , Humanos , ARN Ribosómico 16S/genética , Ecosistema , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Bacteriano/genética , Análisis de Secuencia de ADN/métodos
19.
Gut Microbes ; 15(1): 2164448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683151

RESUMEN

Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.


Asunto(s)
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Morganella , ARN Ribosómico 16S , Genotipo
20.
J Adv Res ; 44: 71-79, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35581140

RESUMEN

INTRODUCTION: Bullous pemphigoid (BP) is the most common autoimmune blistering disease. It predominately afflicts the elderly and is significantly associated with increased mortality. The observation of age-dependent changes in the skin microbiota as well as its involvement in other inflammatory skin disorders suggests that skin microbiota may play a role in the emergence of BP blistering. We hypothesize that changes in microbial diversity associated with BP might occur before the emergence of disease lesions, and thus could represent an early indicator of blistering risk. OBJECTIVES: The present study aims to investigate potential relationships between skin microbiota and BP and elaborate on important changes in microbial diversity associated with blistering in BP. METHODS: The study consisted of an extensive sampling effort of the skin microbiota in patients with BP and age- and sex-matched controls to analyze whether intra-individual, body site, and/or geographical variation correlate with changes in skin microbial composition in BP and/or blistering status. RESULTS: We find significant differences in the skin microbiota of patients with BP compared to that of controls, and moreover that disease status rather than skin biogeography (body site) governs skin microbiota composition in patients with BP. Our data reveal a discernible transition between normal skin and the skin surrounding BP lesions, which is characterized by a loss of protective microbiota and an increase in sequences matching Staphylococcus aureus, a known inflammation-promoting species. Notably, Staphylococcus aureus is ubiquitously associated with BP disease status, regardless of the presence of blisters. CONCLUSION: The present study suggests Staphylococcus aureus may be a key taxon associated with BP disease status. Importantly, we however find contrasting patterns in the relative abundances of Staphylococcus hominis and Staphylococcus aureus reliably discriminate between patients with BP and matched controls. This may serve as valuable information for assessing blistering risk and treatment outcomes in a clinical setting.


Asunto(s)
Enfermedades Autoinmunes , Microbiota , Penfigoide Ampolloso , Humanos , Anciano , Penfigoide Ampolloso/patología , Penfigoide Ampolloso/terapia , Piel , Vesícula/patología , Enfermedades Autoinmunes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA