RESUMEN
Tomato yellow leaf curl disease, a devastating disease of Solanum lycopersicum (tomato), is caused by a complex of begomoviruses generally referred to as Tomato yellow leaf curl virus (TYLCV). Almost all breeding for TYLCV resistance has been based on the introgression of the Ty-1 resistance locus derived from Solanum chilense LA1969. Knowledge about the exact location of Ty-1 on tomato chromosome 6 will help in understanding the genomic organization of the Ty-1 locus. In this study, we analyze the chromosomal rearrangement and recombination behavior of the chromosomal region where Ty-1 is introgressed. Nineteen markers on tomato chromosome 6 were used in F(2) populations obtained from two commercial hybrids, and showed the presence of a large introgression in both. Fluorescence in situ hybridization (FISH) analysis revealed two chromosomal rearrangements between S. lycopersicum and S. chilense LA1969 in the Ty-1 introgression. Furthermore, a large-scale recombinant screening in the two F(2) populations was performed, and 30 recombinants in the Ty-1 introgression were identified. All recombination events were located on the long arm beyond the inversions, showing that recombination in the inverted region was absent. Disease tests on progenies of informative recombinants with TYLCV mapped Ty-1 to the long arm between markers MSc05732-4 and MSc05732-14, an interval overlapping with the reported Ty-3 region, which led to the indication that Ty-1 and Ty-3 may be allelic. With this study we prove that FISH can be used as a diagnostic tool to aid in the accurate mapping of genes that were introgressed from wild species into cultivated tomato.
Asunto(s)
Begomovirus/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Reordenamiento Génico , Genes de Plantas , Enfermedades de las Plantas/genética , Solanum/genética , Mapeo Cromosómico/métodos , Hibridación Fluorescente in Situ , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Recombinación Genética , Solanum/virologíaRESUMEN
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.