Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 8033, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198194

RESUMEN

Given the associated risks with transcatheter aortic valve replacement (TAVR), it is crucial to determine how the implant will affect the valve dynamics and cardiac function, and if TAVR will improve or worsen the outcome of the patient. Effective treatment strategies, indeed, rely heavily on the complete understanding of the valve dynamics. We developed an innovative Doppler-exclusive non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics in patients with aortic stenosis in both pre- and post-TAVR status. Clinical Doppler pressure was reduced by TAVR (52.2 ± 20.4 vs. 17.3 ± 13.8 [mmHg], p < 0.001), but it was not always accompanied by improvements in valve dynamics and left ventricle (LV) hemodynamics metrics. TAVR had no effect on LV workload in 4 patients, and LV workload post-TAVR significantly rose in 4 other patients. Despite the group level improvements in maximum LV pressure (166.4 ± 32.2 vs 131.4 ± 16.9 [mmHg], p < 0.05), only 5 of the 12 patients (41%) had a decrease in LV pressure. Moreover, TAVR did not always improve valve dynamics. TAVR did not necessarily result in a decrease (in 9 out of 12 patients investigated in this study) in major principal stress on the aortic valve leaflets which is one of the main contributors in valve degeneration and, consequently, failure of heart valves. Diastolic stresses increased significantly post-TAVR (34%, 109% and 81%, p < 0.001) for each left, right and non-coronary leaflets respectively. Moreover, we quantified the stiffness and material properties of aortic valve leaflets which correspond with the reduced calcified region average stiffness among leaflets (66%, 74% and 62%; p < 0.001; N = 12). Valve dynamics post-intervention should be quantified and monitored to ensure the improvement of patient conditions and prevent any further complications. Improper evaluation of biomechanical valve features pre-intervention as well as post-intervention may result in harmful effects post-TAVR in patients including paravalvular leaks, valve degeneration, failure of TAVR and heart failure.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento , Hemodinámica
3.
Med Image Anal ; 87: 102795, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060702

RESUMEN

Aortic stenosis (AS) is an acute and chronic cardiovascular disease and If left untreated, 50% of these patients will die within two years of developing symptoms. AS is characterized as the stiffening of the aortic valve leaflets which restricts their motion and prevents the proper opening under transvalvular pressure. Assessments of the valve dynamics, if available, would provide valuable information about the patient's state of cardiac deterioration as well as heart recovery and can have incredible impacts on patient care, planning interventions and making critical clinical decisions with life-threatening risks. Despite remarkable advancements in medical imaging, there are no clinical tools available to quantify valve dynamics invasively or noninvasively. In this study, we developed a highly innovative ultrasound-based non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics (e.g. transient 3-D distribution of stress and displacement, 3-D deformed shape of leaflets, geometric orifice area and angular positions of leaflets) for patients with AS at no risk to the patients. Such a diagnostic tool considers the local valve dynamics and the global circulatory system to provide a platform for testing the intervention scenarios and evaluating their effects. We used clinical data of 12 patients with AS not only to validate the proposed framework but also to demonstrate its diagnostic abilities by providing novel analyses and interpretations of clinical data in both pre and post intervention states. We used transthoracic echocardiogram (TTE) data for the developments and transesophageal echocardiography (TEE) data for validation.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiología , Humanos , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/diagnóstico por imagen , Ecocardiografía , Ecocardiografía Transesofágica
4.
Eur Heart J Imaging Methods Pract ; 1(2): qyad027, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39045072

RESUMEN

Aims: Aortic valve calcification scoring plays an important role in predicting outcomes of transcatheter aortic valve replacement (TAVR). However, the impact of relative calcific density and its causal effect on peri-procedural complications due to sub-optimal valve expansion remains limited. This study aims to investigate the prognostic power of quantifying regional calcification in the device landing zone in the context of peri-procedural events and post-procedural complications based on pre-operative contrast computed tomography angiography (CCTA) images. Assess the effect of calcification on post-procedural device expansion and final configuration. Methods and results: We introduce a novel patient invariant topographic scheme for quantifying the location and relative density of landing zone calcification. The calcification was detected on CCTA images based on a recently developed method using automatic minimization of the false positive rate between aortic lumen and calcific segments. Multinomial logistic regression model evaluation and ROC curve analysis showed excellent classification power for predicting paravalvular leakage [area under the curve (AUC) = 0.8; P < 0.001] and balloon pre-dilation (AUC = 0.907; P < 0.001). The model exhibited an acceptable classification ability for left bundle branch block (AUC = 0.748; P < 0.001) and balloon post-dilation (AUC = 0.75; P < 0.001). Notably, all evaluated models were significantly superior to alternative models that did not include intensity-weighted regional volume scoring. Conclusions: TAVR planning based on contrast computed tomography images can benefit from detailed location, quantity, and density contribution of calcific deposits in the device landing zone. Those parameters could be employed to stratify patients who need a more personalized approach during TAVR planning, predict peri-procedural complications, and indicate patients for follow-up monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA