Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 121: 505-515, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34673256

RESUMEN

The development of effective vaccines is a critical step towards the domestication of emerging fish species for aquaculture. However, traditional vaccine delivery through intraperitoneal (i.p.) injection requires fish to reach a minimum size and age and therefore cannot provide protection at early developmental stages when infection may occur. This study investigated the effectiveness of immersion vaccination with respect to immunocompetence in a cleaner fish species (ballan wrasse, Labrus bergylta, Ascanius) used in Atlantic salmon farming as an alternative means to control sea lice. The species is susceptible to atypical strains of Aeromonas salmonicida (aAs) at early life stages (<15 g), when i.p. vaccination is not applicable. While immersion vaccination is currently used in commercial hatcheries, the optimal fish size for vaccination, and efficacy of the vaccine delivered by this route has not yet been established. Importantly, efficacy depends on the capability of the species immune system to recognise antigens and process antigens to trigger and produce an adaptive immune response, (process known as immunocompetence). In this study, the efficacy of a polyvalent autogenous vaccine administered by immersion in juvenile ballan wrasse and the subsequent immune response induced was investigated after prime and booster vaccination regimes. In addition, temporal expression (0-150 days post hatch) of adaptive immune genes including major histocompatibility complex (MHC II CD74 molecule) and immunoglobulin M (IgM) was assessed using quantitative PCR (qPCR). Prime and/or boost vaccination by immersion of juvenile ballan wrasse (0.5 g and 1.5 g corresponding to 80 and 170 days post hatch (dph), respectively) did not provide significant protection against aAs vapA V after bath challenge under experimental conditions. Despite no evident protection >80 dph, MHC II and IgM transcripts were first reported at 35 and 75 dph, respectively, suggesting a window of immunocompetence. The results provide important new information on the onset of adaptive immunity in ballan wrasse and highlight that immersion vaccination in the species for protection against aAs should be performed at later developmental stages (>1.5 g) in the hatchery.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas/veterinaria , Perciformes , Animales , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Genes MHC Clase II , Infecciones por Bacterias Gramnegativas/prevención & control , Inmersión , Inmunocompetencia , Inmunoglobulina M , Perciformes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA