Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 361: 124870, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218201

RESUMEN

The exposure and health implications of exhaled aerosol particles from tobacco products remain a critical area of concern in public health. This research aimed to characterize the cytotoxicity of exhaled aerosol particles from conventional cigarettes (CC) and heated tobacco products (HTP) using a novel "Cells-on-Particles" integrated aerosol sampling and cytotoxicity in vitro testing platform. The research uniquely captures the physical and chemical characteristics of aerosols by depositing them onto fibrous matrixes, enabling a more accurate representation of exposure conditions. New insights were provided into the differences between CC and HTP in terms of particle size distributions, cell viability, metabolic activity, and the expression of genes related to xenobiotic metabolism and oxidative stress. This approach marks a significant advancement in the field by offering a more direct and representative method to evaluate the potential health hazards of tobacco aerosol particles.

2.
Toxicology ; 508: 153936, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216545

RESUMEN

The presented research introduces the "Cells-on-Particles" integrated aerosol sampling and cytotoxicity testing in vitro platform, which allows for the direct assessment of the biological effects of captured aerosol particles on a selected cell type without the need for extraction or resuspension steps. By utilizing particles with unaltered chemical and physical properties, the method enables simple and fast screening of biological effects on specific cell types, making it a promising tool for assessing the cytotoxicity of particulate matter in ambient and occupational air. Platforms fabricated from cellulose acetate (CA) and poly[ε]caprolactone (PCL) were proven to be biocompatible and promoted the attachment and growth of the human bronchial epithelial cell line BEAS-2B. The PCL platforms were exposed to simulated occupational aerosols of silver, copper, and graphene oxide nanoparticles. Each nanoparticle type exhibited different and dose-dependent cytotoxic effects on cells, evidenced by reduced cell viability and distinct, particle type-dependent gene expression patterns. Notably, copper nanoparticles were identified as the most cytotoxic, and graphene oxide the least. Comparing the "Cells-on-Particles" and submerged exposure ("Particles-on-Cells") testing strategies, BEAS-2B cells responded to selected nanoparticles in a comparable manner, suggesting the developed testing system could be proposed for further evaluation with more complex environmental aerosols. Despite limitations, including particle agglomeration and the need for more replicates to address variability, the "Cells-on-Particles" platform enables effective detection of toxicity induced by relatively low levels of nanoparticles, demonstrating good sensitivity and a relatively simpler procedure compared to standard 2D cell exposure methods.


Asunto(s)
Aerosoles , Supervivencia Celular , Pruebas de Toxicidad , Humanos , Supervivencia Celular/efectos de los fármacos , Línea Celular , Pruebas de Toxicidad/métodos , Cobre/toxicidad , Grafito/toxicidad , Nanopartículas del Metal/toxicidad , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Tamaño de la Partícula , Plata/toxicidad , Material Particulado/toxicidad , Poliésteres/toxicidad , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA