Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808156

RESUMEN

The paper presents the obtention and characterization of Portland cement mortars with limestone filler and nano-calcite additions. The nano-calcite was obtained by the injection of CO2 in a nano-Ca(OH)2 suspension. The resulted nano-CaCO3 presents different morphologies, i.e., polyhedral and needle like crystals, depending on the initial Ca(OH)2 concentration of the suspension. The formation of calcium carbonate in suspensions was confirmed by X-ray diffraction (XRD), complex thermal analysis (DTA-TG), scanning electron microscopy (SEM) and transmission electron microscopy (TEM and HRTEM). This demonstrates the viability of this method to successfully sequestrate CO2 in cement-based materials. The use of this type of nano-CaCO3 in mortar formulations based on PC does not adversely modify the initial and final setting time of cements; for all studied pastes, the setting time decreases with increase of calcium carbonate content (irrespective of the particle size). Specific hydrated phases formed by Portland cement hydration were observed in all mortars, with limestone filler additions or nano-CaCO3, irrespective of curing time. The hardened mortars with calcium carbonate additions (in adequate amounts) can reach the same mechanical strengths as reference (Portland cement mortar). The addition of nano-CaCO3 in the raw mix increases the mechanical strengths, especially at shorter hardening periods (3 days).

2.
Materials (Basel) ; 15(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35009294

RESUMEN

The main objective of this study is the synthesis and characterization of low cost alkali-activated inorganic polymers based on waste glass (G-AAIPs) using a mixture of NaOH and Ca(OH)2 as alkali activators, in order to improve their hydrolytic stability. This paper also presents detailed information about the influence of composition determined by X Ray Diffraction (XRD), microstructure determined by Scanning Electronic Microscopy (SEM) and processing parameters on the main properties of G-AAIP pastes. The main factors analyzed were the glass fineness and the composition of the alkaline activators. The influence on intumescent behavior was also studied by heat treating of specimens at 600 °C and 800 °C. The use of Ca(OH)2 in the composition of the alkaline activator determines the increase of the hydrolytic stability (evaluated by underwater evolution index) of the G-AAIP materials compared to those obtained by NaOH activation. In this case, along with sodium silicate hydrates, calcium silicates hydrates (C-S-H), with good stability in a humid environment, were also formed in the hardened pastes. The highest intumescence and an improvement of hydrolytic stability (evaluated by underwater evolution index and mass loss) was achieved for the waste glass powder activated with a solution containing 70% NaOH and 30% Ca(OH)2. The increase of the waste glass fineness and initial curing temperature of G-AAIPs have a positive effect on the intumescence of resulted materials but have a reduced influence on their mechanical properties and hydrolytic stability.

3.
Molecules ; 21(2)2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26901185

RESUMEN

In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.


Asunto(s)
Compuestos de Aluminio/química , Compuestos de Calcio/química , Cementos Dentales/química , Óxidos/química , Silicatos/química , Combinación de Medicamentos , Ensayo de Materiales , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA