Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6800, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122724

RESUMEN

Mg3Sb2-based thermoelectrics show great promise for next-generation thermoelectric power generators and coolers owing to their excellent figure of merit (zT) and earth-abundant composition elements. However, the complexity of the defect microstructure hinders the advancement of high performance. Here, the defect microstructure is modified via In doping and prolonged sintering time to realize the reduced structural disorder and microstructural evolution, synergistically optimizing electron and phonon transport via a delocalization effect. As a result, an excellent carrier mobility of ~174 cm2 V-1 s-1 and an ultralow κ l a t of ~0.42 W m-1 K-1 are realized in this system, leading to an ultrahigh zT of ~2.0 at 723 K. The corresponding single-leg module demonstrates a high conversion efficiency of ~12.6% with a 425 K temperature difference, and the two-pair module of Mg3Sb2/MgAgSb displays ~7.1% conversion efficiency with a 276 K temperature difference. This work paves a pathway to improve the thermoelectric performance of Mg3Sb2-based materials, and represents a significant step forward for the practical application of Mg3Sb2-based devices.

2.
ACS Appl Mater Interfaces ; 16(35): 46363-46373, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39185566

RESUMEN

GeTe-based alloys have been studied as promising TE materials in the midtemperature range as a lead-free alternate to PbTe due to their nontoxicity. Our previous study on GeTe1-xIx revealed that I-doping increases lattice anharmonicity and decreases the structural phase transition temperature, consequently enhancing the thermoelectric performance. Our current work elucidates the synergistic interplay between band convergence and lattice softening, resulting in an enhanced thermoelectric performance for Ge1-ySbyTe0.9I0.1 (y = 0.10, 0.12, 0.14, and 0.16). Sb doping in GeTe0.9I0.1 serves a double role: first, it leads to lattice softening, thereby reducing lattice thermal conductivity; second, it promotes a band convergence, thus a higher valley degeneracy. The presence of lattice softening is corroborated by an increase in the internal strain ratio observed in X-ray diffraction patterns. Doping also introduces phonon scattering centers, further diminishing lattice thermal conductivity. Additionally, variations in the electronic band structure are indicated by an increase in density of state effective mass and a decrease in carrier mobility with Sb concentration. Besides, Sb doping optimizes the carrier concentration efficiently. Through a two-band modeling and electronic band structure calculations, the valence band convergence due to Sb doping can be confirmed. Specifically, the energy difference between valence bands progressively narrows upon Sb doping in Ge1-ySbyTe0.9I0.1 (y = 0, 0.02, 0.05, 0.10, 0.12, 0.14, and 0.16). As a culmination of these effects, we have achieved a significant enhancement in zT for Ge1-ySbyTe0.9I0.1 (y = 0.10, 0.12, 0.14, and 0.16) across the entire range of measured temperatures. Notably, the sample with y = 0.12 exhibits the highest zT value of 1.70 at 723 K.

3.
Materials (Basel) ; 14(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500963

RESUMEN

Developing inexpensive and rapid fabrication methods for high efficiency thermoelectric alloys is a crucial challenge for the thermoelectric industry, especially for energy conversion applications. Here, we fabricated large amounts of p-type Cu0.07Bi0.5Sb1.5Te3 alloys, using water atomization to control its microstructure and improve thermoelectric performance by optimizing its initial powder size. All the water atomized powders were sieved with different aperture sizes, of 32-75 µm, 75-125 µm, 125-200 µm, and <200 µm, and subsequently consolidated using hot pressing at 490 °C. The grain sizes were found to increase with increasing powder particle size, which also increased carrier mobility due to improved carrier transport. The maximum electrical conductivity of 1457.33 Ω-1 cm-1 was obtained for the 125-200 µm samples due to their large grain sizes and subsequent high mobility. The Seebeck coefficient slightly increased with decreasing particle size due to scattering of carriers at fine grain boundaries. The higher power factor values of 4.20, 4.22 × 10-3 W/mk2 were, respectively, obtained for large powder specimens, such as 125-200 µm and 75-125 µm, due to their higher electrical conductivity. In addition, thermal conductivity increased with increasing particle size due to the improvement in carriers and phonons transport. The 75-125 µm powder specimen exhibited a relatively high thermoelectric figure of merit, ZT of 1.257 due to this higher electric conductivity.

4.
Materials (Basel) ; 14(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066166

RESUMEN

Bismuth-Telluride-based compounds are unique materials for thermoelectric cooling applications. Because Bi2Te3 is a narrow gap semiconductor, the bipolar diffusion effect is a critical issue to enhance thermoelectric performance. Here, we report the significant reduction of thermal conductivity by decreasing lattice and bipolar thermal conductivity in extrinsic phase mixing of MgO and VO2 nanoparticles in Bi0.5Sb1.5Te3 (BST) bulk matrix. When we separate the thermal conductivity by electronic κel, lattice κlat, and bipolar κbi thermal conductivities, all the contributions in thermal conductivities are decreased with increasing the concentration of oxide particle distribution, indicating the effective phonon scattering with an asymmetric scattering of carriers. The reduction of thermal conductivity affects the improvement of the ZT values. Even though significant carrier filtering effect is not observed in the oxide bulk composites due to micro-meter size agglomeration of particles, the interface between oxide and bulk matrix scatters carriers giving rise to the increase of the Seebeck coefficient and electrical resistivity. Therefore, we suggest the extrinsic phase mixing of nanoparticles decreases lattice and bipolar thermal conductivity, resulting in the enhancement of thermoelectric performance over a wide temperature range.

5.
Materials (Basel) ; 14(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810161

RESUMEN

We investigated the anisotropic thermoelectric properties of the Bi2Te2.85Se0.15Ix (x = 0.0, 0.1, 0.3, 0.5 mol.%) compounds, synthesized by ball-milling and hot-press sintering. The electrical conductivities of the Bi2Te2.85Se0.15Ix were significantly improved by the increase of carrier concentration. The dominant electronic scattering mechanism was changed from the mixed (T ≤ 400 K) and ionization scattering (T ≥ 420 K) for pristine compound (x = 0.0) to the acoustic phonon scattering by the iodine doping. The Hall mobility was also enhanced with the increasing carrier concentration. The enhancement of Hall mobility was caused by the increase of the mean free path of the carrier from 10.8 to 17.7 nm by iodine doping, which was attributed to the reduction of point defects without the meaningful change of bandgap energy. From the electron diffraction patterns, a lattice distortion was observed in the iodine doped compounds. The modulation vector due to lattice distortion increased with increasing iodine concentration, indicating the shorter range lattice distortion in real space for the higher iodine concentration. The bipolar thermal conductivity was suppressed, and the effective masses were increased by iodine doping. It suggests that the iodine doping minimizes the ionization scattering giving rise to the suppression of the bipolar diffusion effect, due to the prohibition of the BiTe1 antisite defect, and induces the lattice distortion which decreases lattice thermal conductivity, resulting in the enhancement of thermoelectric performance.

6.
ACS Appl Mater Interfaces ; 12(34): 38076-38084, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805971

RESUMEN

We investigate the thermoelectric properties of (CuI)0.003Bi2Te2.7Se0.3/Mo (Mo: 0.0, 0.9, 1.3, 1.8, 3.1, and 4.3 vol %) composites, which were synthesized by extrinsic phase mixing with hot press sintering. From X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) measurements, we confirm that micro-sized Mo particles are dispersed homogeneously in the (CuI)0.003Bi2Te2.7Se0.3 matrix without doping. While the electrical resistivity of Mo-dispersed (CuI)0.003Bi2Te2.7Se0.3 composites is not changed significantly, the Seebeck coefficient is significantly increased. Because the work function (5.3 eV) of the (CuI)0.003Bi2Te2.7Se0.3 compounds, measured by ultraviolet photoelectron spectroscopy (UPS), is larger than that of Mo particles (4.95 eV), we expect the potential barrier near the interfaces between the BTS matrix and Mo particles. The band bending effect and potential barrier can give rise to the low-energy carrier filtering. For a low concentration dispersion of Mo particles (<2 vol %), a decrease of Hall carrier concentration, an increase of Hall mobility, a decrease of effective mass, and an increase of Seebeck coefficient also support the formation of low-energy carrier filtering. The Mo dispersion does not affect the decrease in the lattice thermal conductivity but enhances the power factor significantly, leading to the high ZT value above 1.0 at room temperature, which is a high level in n-type thermoelectric room-temperature applications.

7.
ACS Appl Mater Interfaces ; 12(1): 925-933, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31850742

RESUMEN

Bi2Te3-based compounds have long been studied as thermoelectric materials in cooling applications near room temperature. Here, we investigated the thermoelectric properties of CuI-doped Bi2Te2.1Se0.9 compounds. The Cu/I codoping induces the lattice distortion partially in the matrix. We report that the charge density wave caused by the local lattice distortion affects the electrical and thermal transport properties. From the high-temperature specific heat, we found a first-order phase transitions near 490 and 575 K for CuI-doped compounds (CuI)xBi2Te2.1Se0.9 (x = 0.3 and 0.6%), respectively. It is not a structural phase transition, confirming from the high-temperature X-ray diffraction. The temperature-dependent electrical resistivity shows a typical behavior of charge density wave transition, which is consistent with the temperature-dependent Seebeck coefficient and thermal conductivity. The transmission electron microscopy and electron diffraction show a local lattice distortion, driven by the charge density wave transition. The charge density wave formation in the Bi2Te3-based compounds are exceptional because of the possibility of coexistence of charge density wave and topological surface states. From the Kubo formula and Boltzmann transport calculations, the formation of charge density wave enhances the power factor. The lattice modulation and charge density wave decrease lattice thermal conductivity, resulting in the enhancement of thermoelectric performance simultaneously in CuI-doped samples. Consequently, an enhancement of thermoelectric performance ZT over 1.0 is achieved at 448 K in the (CuI)0.003Bi2Te2.1Se0.9 sample. The enhancement of ZT at high temperature gives rise to a superior average ZTavg (1.0) value than those of previously reported ones.

8.
RSC Adv ; 9(8): 4190-4197, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35520183

RESUMEN

Bi2Te3-based compounds have received attention as thermoelectric materials for room-temperature cooling and waste heat recovery applications. With potential application prospects, quaternary compounds of Bi2Te3-Bi2Se3-Bi2S3 composites can be used for mid-temperature power generation under 500 °C. Herein, we investigated the thermoelectric properties of (CuI) y (Bi2Te3)0.95-x (Bi2Se3) x (Bi2S3)0.05 (x = 0.05, 0.2; y = 0.0, 0.003) compounds. Through X-ray diffraction and transmission electron microscopy, we confirmed that the lattice disorder in (Bi2Te3)0.95-x (Bi2Se3) x (Bi2S3)0.05 (x = 0.2) was due to multiple element substitutions. Disorder carrier scattering induced the localized nature of electrical resistivity, as confirmed by variable range hopping at low temperature. The temperature-dependent Seebeck coefficient of (Bi2Te3)0.95-x (Bi2Se3) x (Bi2S3)0.05 showed a carrier-type change from p- to n-type behaviour in the intermediate temperature range (525 K for x = 0.05 and 360 K for x = 0.2). Even though strong carrier localization increased electrical resistivity, resulting in degradation of the power factor and thermoelectric performance, when the chemical potential was increased to the conduction band minimum through CuI co-doping into the (CuI)0.003(Bi2Te3)0.95-x (Bi2Se3) x (Bi2S3)0.05 (x = 0.05, 0.2) compounds, the carriers were delocalized and showed n-type behaviour in the Seebeck coefficient. The temperature-dependent thermal conductivity shows the suppression of bipolar conduction behaviour. The simultaneous effect on carrier optimization through chemical potential tuning and lattice disorder caused a high ZT value of 0.85 at 523 K for CuI-doped (Bi2Te3)0.75(Bi2Se3)0.2(Bi2S3)0.05, which was comparatively high for n-type thermoelectric materials in the mid-temperature range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA