Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MethodsX ; 9: 101795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935528

RESUMEN

We developed a set of web-based tools to meet the demand for spatial planning and help to determine the available space suitable for marine aquaculture activity. These tools were derived from AkvaVis concept, which was initially designed for the management of Norwegian aquaculture. The AkvaVis concept was adapted to different national aquaculture contexts and two other tools were developed in France and China. Besides using GIS maps and thematic layers, interactive functions were added to enable the user to select spatial parameters, build indicators for aquaculture siting and instantly display the requested information. For each tool, we describe the main technical features, input data, data geoprocessing, output products, tool strengths and limits, and applicability to other case studies. The three tools we present share common concepts and features:•use of standardized protocols for data (Web Feature Services, Web Map Services)•reusability of the modules developed for applications to other case studies•web-based interface for spatial data viewing and processingThey also show some differences, e.g., the Chinese tool exists as a desktop or a web-based support system. Differences and demonstrations for different aquaculture contexts in Europe and China offer some flexibility in future applications.

2.
PeerJ ; 9: e12550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036122

RESUMEN

Individual traits and population parameters can be used as proxies of processes taking place within a range of scales, thus improving the way we can evaluate species response to environmental variability. In intertidal rocky shores, patterns at the within-site scale, i.e., between centimeters to hundreds of meters, are important for understanding the population response into these highly variable environments. Here, we studied a rocky-shore mussel population at the within-site spatial scale (1) to test how intertidal height and orientation of the shore affect individual traits and population parameters, (2) to infer the link between individual and population level features, and (3) to explore the upscaling mechanisms driving population structure and processes. We analyzed the patterns of six population parameters: density, biomass, crowding, median individual size, recruitment and mortality rate, and four individual traits: growth rate, spawning phenology, size and condition index. Crowding was defined as the degree of overlapping of individuals within a given area, for which we created a "crowding index". Mussels were studied along the intertidal height gradient in two rocky shores with contrasted orientation at one site over a full year. Our results showed a significant effect of intertidal height and shore orientation on most of individual traits and population parameters studied. In contrast, biomass contained in a full covered surface did not vary in space nor in time. This pattern likely results from relatively constant crowding and a trade-off between median individuals' size and density. We hypothesize that growth, mortality and recruitment rates may all play roles in the stability of the crowding structure of mussel aggregations. Variation in spawning phenology between the two shores in the study site was also observed, suggesting different temporal dynamics of microclimate conditions. Interestingly, despite the different population size distribution between the two shores, our estimates indicate similar potential reproductive output. We hypothesize that the structure of the patches would tend to maintain or carry a maximum of biomass due to trade-offs between density and size while maintaining and maximizing the reproductive output. The patterns of spatial variability of individual traits and population parameters in our study site suggest that heterogeneous within-site conditions influence variation in individual performance and population processes. These results provide insights about the relationship between individual traits and how these relationships make patterns at the population level emerge. They provide baseline information necessary to improve models of metapopulation with spatially explicit processes.

3.
Harmful Algae ; 93: 101785, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32307069

RESUMEN

Distribution, frequency and intensity of harmful phytoplanktonic species are impacted by changes in environmental conditions. In the Bay of Brest, Alexandrium minutum has been responsible for several harmful algal blooms (HABs) associated with toxin production causing paralytic shellfish poisoning (PSP). Additionally, Lepidodinium chlorophorum causes green water and hypoxia locally in the Bay of Biscay. Previous studies revealed that L. chlorophorum's success was related to possible competitive exclusion. Therefore, the phytoplankton composition and the environmental conditions should be taken into account. This study aims to assess the combined effect of changes in habitat conditions and community structure with the occurrence of HAB species, on a spatial-temporal scale. For the investigation we first used the Hutchinson's niche concept by means of the Outlying Mean Index (OMI) analysis. The OMI analysis enable us to observe the environmental variables defining the ecological niche of the harmful species among the community. Secondly, we used the subniche theory to highlight the environmental variables defining the subniches in cases of high and low abundance of HABs with an estimation of the biological constraint restricting the species' subniche. This was undertaken using the Within Outlying Mean indexes (WitOMI) calculated under environmental conditions promoting high (H) and low (L) abundance bloom. Thirdly, we used the Indicator Species Concept from the Indicator Species Analysis (ISA) to link the biological restriction with potential competing or indicator species. We combined a data set from the French National Phytoplankton and Phycotoxin Monitoring Network (REPHY), the Velyger network (oyster monitoring program) and satellite imagery. A total of 44 stations, over the period of 1998-2017 using 50 taxonomic units. 36 taxa had significant niche and were mostly distributed along nutrient and salinity gradients. The two species of interest L. chlorophorum and A. minutum seemed to have similar affinity for summer-like environmental conditions and both used a marginal habitat compared to the rest of the community. A. minutum had a larger niche due to a greater affinity to the estuarine-like conditions. The subniche of the two species had a similar response to the environmental variation; their respective abundance was partly caused by greater environmental restrains. Their success in abundance appeared to be linked to local hydrodynamics which increases or reduces resources. On the other hand, the biotic pressure exerted upon A. minutum and L. chlorophorum were antagonistic. A possible competitor assemblage was exposed but the analysis was inconclusive. The methodological limitations were discussed as well as a perspective for future similar studies.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Floraciones de Algas Nocivas , Humanos , Fitoplancton , Imágenes Satelitales
4.
Glob Chang Biol ; 24(10): 4581-4597, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30030873

RESUMEN

Climate change exposes benthic species populations in coastal ecosystems to a combination of different stressors (e.g., warming, acidification and eutrophication), threatening the sustainability of the ecological functions they provide. Thermal stress appears to be one of the strongest drivers impacting marine ecosystems, acting across a wide range of scales, from individual metabolic performances to geographic distribution of populations. Accounting for and integrating the response of species functional traits to thermal stress is therefore a necessary step in predicting how populations will respond to the warming expected in coming decades. Here, we developed an individual-based population model using a mechanistic formulation of metabolic processes within the framework of the dynamic energy budget theory. Through a large number of simulations, we assessed the sensitivity of population growth potential to thermal stress and food conditions based on a climate projection scenario (Representative Concentration Pathway; RCP8.5: no reduction of greenhouse gas emissions). We focused on three bivalve species with contrasting thermal tolerance ranges and distinct distribution ranges along 5,000 km of coastline in the NE Atlantic: the Pacific oyster (Magallana gigas), and two mussel species: Mytilus edulis and Mytilus galloprovincialis. Our results suggest substantial and contrasting changes within species depending on local temperature and food concentration. Reproductive phenology appeared to be a core process driving the responses of the populations, and these patterns were closely related to species thermal tolerances. The nonlinear relationship we found between individual life-history traits and response at the population level emphasizes the need to consider the interactions resulting from upscaling across different levels of biological organisation. These results underline the importance of a process-based understanding of benthic population response to seawater warming, which will be necessary for forward planning of resource management and strategies for conservation and adaptation to environmental changes.


Asunto(s)
Calentamiento Global , Mytilus/fisiología , Aclimatación , Adaptación Fisiológica , Animales , Ecosistema , Modelos Biológicos , Agua de Mar
5.
PeerJ ; 6: e5038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938137

RESUMEN

The complexity and scales of the processes that shape communities of marine benthic macroinvertebrates has limited our understanding of their assembly mechanisms and the potential to make projections of their spatial and temporal dynamics. Individual-based models can shed light on community assembly mechanisms, by allowing observed spatiotemporal patterns to emerge from first principles about the modeled organisms. Previous work in the Rance estuary (Brittany, France) revealed the principal functional components of its benthic macroinvertebrate communities and derived a set of functional relationships between them. These elements were combined here for the development of a dynamic and spatially explicit model that operates at two spatial scales. At the fine scale, modeling each individual's life cycle allowed the representation of recruitment, inter- and intra-group competition, biogenic habitat modification and predation mortality. Larval dispersal and environmental filtering due to the tidal characteristics of the Rance estuary were represented at the coarse scale. The two scales were dynamically linked and the model was parameterized on the basis of theoretical expectations and expert knowledge. The model was able to reproduce some patterns of α- and ß-diversity that were observed in the Rance estuary in 1995. Model analysis demonstrated the role of local and regional processes, particularly early post-settlement mortality and spatially restricted dispersal, in shaping marine benthos. It also indicated biogenic habitat modification as a promising area for future research. The combination of this mechanism with different substrate types, along with the representation of physical disturbances and more trophic categories, could increase the model's realism. The precise parameterization and validation of the model is expected to extend its scope from the exploration of community assembly mechanisms to the formulation of predictions about the responses of community structure and functioning to environmental change.

6.
J Phycol ; 53(5): 1020-1034, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28707731

RESUMEN

Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms.


Asunto(s)
Biomasa , Carbono/metabolismo , Ecosistema , Fitoplancton/fisiología , Diatomeas/crecimiento & desarrollo , Francia , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Modelos Biológicos , Océanos y Mares , Fitoplancton/crecimiento & desarrollo , Estaciones del Año
7.
Harmful Algae ; 67: 44-60, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28755720

RESUMEN

The dinoflagellate Alexandrium minutum is a toxic bloom-forming species distributed worldwide. The mechanisms driving and promoting the species blooms and their toxicity are studied and presented here. Most previously published work focuses on local and/or short-term scales. In this study, a broad temporal and spatial approach is addressed using time series covering several sites over several years and combining environmental variables and A. minutum abundances from the French English Channel - Atlantic coasts. Data were explored by means of phenology and threshold analysis. The A. minutum bloom characteristics are defined. Only one bloom per year is measured and it may reach more than a million of cells L-1. Bloom period extends from April to October and the bloom length ranges from two weeks to six months. In the ecosystems studied, water temperature and river flow, as regional and local factors respectively, are the main environmental drivers influencing the magnitude, growth rate and length of the blooms. Bloom toxicity is linked to the bloom maximum abundance and river flow. This work provides new knowledge for further managing tools for A. minutum blooms in the ecosystems studied.


Asunto(s)
Dinoflagelados/fisiología , Floraciones de Algas Nocivas , Estuarios , Geografía , Toxinas Marinas/toxicidad , Modelos Biológicos , Estaciones del Año , Temperatura , Factores de Tiempo
8.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880845

RESUMEN

Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers.


Asunto(s)
Acuicultura/métodos , Herpesviridae/fisiología , Ostreidae/microbiología , Animales , Enfermedades Transmisibles Emergentes/prevención & control , Interacciones Huésped-Patógeno , Factores de Riesgo
9.
Mar Pollut Bull ; 100(1): 200-216, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371845

RESUMEN

A moratorium on further bivalve leasing was established in 1999-2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.


Asunto(s)
Acuicultura , Bivalvos , Modelos Teóricos , Animales , Bahías , Biomasa , Ecosistema , Ambiente , Fitoplancton , Isla del Principe Eduardo , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA