Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668152

RESUMEN

A composite material composed of anodized aluminum oxide (AAO), carbon (C), and magnesium oxide (MgO) was developed for CO2 capture applications. Inspired by the bryophyte organism, the AAO/C/MgO composite mirrors two primary features of these species-(1) morphological characteristics and (2) elemental composition-specifically carbon, oxygen, and magnesium. The synthesis process involved two sequential steps: electroanodization of aluminum foil followed by a hydrothermal method using a mixture of glucose and magnesium chloride (MgCl2). The concentration of MgCl2 was systematically varied as the sole experimental variable across five levels-1 mM, 2 mM, 3 mM, 4 mM, and 5 mM-to investigate the impact of MgO formation on the samples' chemical and physical properties, and consequently, their CO2 capture efficiency. Thus, scanning electron microscopy analysis revealed the AAO substrate's porous structure, with pore diameters measuring 250 ± 30 nm. The growth of MgO on the AAO substrate resulted in spherical structures, whose diameter expanded from 15 nm ± 3 nm to 1000 nm ± 250 nm with increasing MgCl2 concentration from the minor to major concentrations explored, respectively. X-ray photoelectron spectroscopy (XPS) analysis indicated that carbon serves as a linking agent between AAO and MgO within the composite. Notably, the composite synthesized with a 4 mM MgCl2 concentration exhibited the highest CO2 capture efficiency, as determined by UV-Vis absorbance studies using a sodium carbonate solution as the CO2 source. This efficiency was quantified with a 'k' constant of 0.10531, significantly higher than those of other studied samples. The superior performance of the 4 mM MgCl2 sample in CO2 capture is likely due to the optimal density of MgO structures formed on the sample's surface, enhancing its adsorptive capabilities as suggested by the XPS results.

2.
Materials (Basel) ; 11(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205464

RESUMEN

The effect of the substitution of Y3+ by Nd3+ on the structural and magnetic properties of neodymium-doped yttrium iron garnet, NdxY3-xFe5O12 with x in the range of 0⁻2.5, is presented. Oxide powders of Fe2O3, Nd2O3, and Y2O3 were mixed in a stoichiometric ratio and milled for 5 h using high-energy ball milling, before being uniaxially pressed at 900 MPa and annealed at 1373 K for 2 h to obtain NdxY3-xFe5O12 (0 ≤ x ≤ 2.5). It was found that the mechanical milling of oxides followed by annealing promotes the complete structural formation of the garnet structure. Additionally, the X-ray diffraction patterns confirm the complete introduction of Nd3+ into the garnet structure with a neodymium doping concentration (x) of 0⁻2.0, which causes a consistent increment in the lattice parameters with the Nd3+ content. When x is higher than 2.0, the yttrium orthoferrite is the predominant phase. Besides, the magnetic results reveal an increase in the Curie temperature (583 K) as the amount of Nd3+ increases, while there was enhanced saturation magnetization as well as modified remanence and coercivity with respect to non-doped YIG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA