Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 680, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914545

RESUMEN

The Me 163 was a Second World War fighter airplane and is currently displayed in the Deutsches Museum in Munich, Germany. A complete computed tomography (CT) scan was obtained using a large scale industrial CT scanner to gain insights into its history, design, and state of preservation. The CT data enables visual examination of the airplane's structural details across multiple scales, from the entire fuselage to individual sprockets and rivets. However, further processing requires instance segmentation of the CT data-set. Currently, there are no adequate computer-assisted tools for automated or semi-automated segmentation of such large scale CT airplane data. As a first step, an interactive data annotation process has been established. So far, seven 512 × 512 × 512 voxel sub-volumes of the Me 163 airplane have been annotated, which can potentially be used for various applications in digital heritage, non-destructive testing, or machine learning. This work describes the data acquisition process, outlines the interactive segmentation and post-processing, and discusses the challenges associated with interpreting and handling the annotated data.

2.
Rep Prog Phys ; 85(1)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35138267

RESUMEN

Advanced manufacturing technologies, led by additive manufacturing, have undergone significant growth in recent years. These technologies enable engineers to design parts with reduced weight while maintaining structural and functional integrity. In particular, metal additive manufacturing parts are increasingly used in application areas such as aerospace, where a failure of a mission-critical part can have dire safety consequences. Therefore, the quality of these components is extremely important. A critical aspect of quality control is dimensional evaluation, where measurements provide quantitative results that are traceable to the standard unit of length, the metre. Dimensional measurements allow designers, manufacturers and users to check product conformity against engineering drawings and enable the same quality standard to be used across the supply chain nationally and internationally. However, there is a lack of development of measurement techniques that provide non-destructive dimensional measurements beyond common non-destructive evaluation focused on defect detection. X-ray computed tomography (XCT) technology has great potential to be used as a non-destructive dimensional evaluation technology. However, technology development is behind the demand and growth for advanced manufactured parts. Both the size and the value of advanced manufactured parts have grown significantly in recent years, leading to new requirements of dimensional measurement technologies. This paper is a cross-disciplinary review of state-of-the-art non-destructive dimensional measuring techniques relevant to advanced manufacturing of metallic parts at larger length scales, especially the use of high energy XCT with source energy of greater than 400 kV to address the need in measuring large advanced manufactured parts. Technologies considered as potential high energy x-ray generators include both conventional x-ray tubes, linear accelerators, and alternative technologies such as inverse Compton scattering sources, synchrotron sources and laser-driven plasma sources. Their technology advances and challenges are elaborated on. The paper also outlines the development of XCT for dimensional metrology and future needs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA