Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 113126, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265356

RESUMEN

One of the venereal tumors that threaten human life is cervical cancer. A2ML1 is detected in advanced-stage cancer patients and is found to be strongly associated with cervical cancer. A2ML1 was shown to be substantially expressed in cervical cancer in this study, which used data from the TCGA database. Those with high A2ML1 expression had a lower chance of survival than patients with low A2ML1 expression. Both univariate and multivariate Cox regression analyses were utilized to investigate the relationship between clinical variables and overall survival rates. An investigation into the link between A2ML1 and immune infiltration was subsequently conducted. Utilizing the immune cell database, research was conducted to investigate the dispersion of 24 immune cells and their correlation to A2ML1 expression. In addition to this, the favorable correlation between immune cells and A2ML1 was validated using all three immune cell methodologies. The Genomics of Drug Sensitivity in Cancer database was used to confirm the idea that there is a link between A2ML1 expression and the efficacy of chemotherapy or immunotherapy. The findings demonstrated that A2ML1 is a potential biomarker for cervical cancer diagnostics. This biomarker may be used to chaperone immunotherapy, as well as to explain the elucidates of cervical cancer caused by the immunological microenvironment.

2.
Int J Biol Macromol ; : 135629, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278442

RESUMEN

A multipurpose food packaging film was created using pullulan and cassava starch as bases and sodium caseinate/zein-loaded Litsea cubeba essential oil nanoparticles as fillers. The study showed that the PS, PDI, Zeta potential and encapsulation efficiency of LC-EO in SC/ZNPs1% were 206.34 nm, 0.28 %, -25.73 mV, and 89.69 %, respectively, indicating even distribution and good stability. FTIR and XRD analysis confirmed hydrogen bond formation and structural changes between nanoparticle-forming materials, while SEM analysis revealed uniform distribution and spherical morphology of SC/ZNPs1%.The study found that the psc4% film showed improved mechanical properties, including an increase in elongation at break from 14.76 % to 19.30 %, and enhanced barrier characteristics, despite a slight decrease in tensile strength from 28.53 MPa to 7.77 MPa. The pcs4% film enhanced hydrophobic characteristics from 39.06 % to 20.91 % and showed inhibition against Staphylococcus aureus and E. coli O157:H7 at 28 mm and 23 mm inhibition zones, respectively, with improved antioxidant properties (76.16 %), effectively reducing bacterial populations, color, texture, and pH change and lipid oxidation in fresh beef for up to seven days. The psc4% film is a promising new active antibacterial and antioxidant food-packaging material.

3.
Sci Rep ; 14(1): 18397, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117977

RESUMEN

Antibiotics, improper food, and stress have created a dysbiotic state in the gut and almost 81% of the world's population has been affected due to the pandemic of COVID-19 and the prevalence of dengue virus in the past few years. The main intent of this study is to synthesize nanosynbiotics as nu traceuticals by combining probiotics, and prebiotics with nanoformulation. The effectiveness of the nanosynbiotics was evaluated using a variety of Nutra-pharmacogenetic assays leading to an AI-integrated formulation profiling was assessed by using machine learning methods. Consequently, Acetobacter oryzoeni as a probiotic and inulin as a prebiotic has been chosen and iron-mediated nanoformulation of symbiotic is achieved. Nanosynbiotics possessed 89.4, 96.7, 93.57, 83.53, 88.53% potential powers of Nutra-pharmacogenetic assays. Artificial intelligent solid dispersion formulation of nanosynbiotics has high dissolution, absorption, distribution, and synergism, in addition, they are non-tox, non-allergen and have a docking score of - 10.83 kcal/mol, implying the best interaction with Pregnane X receptor involved in dysbiosis. The potential of nanosynbiotics to revolutionize treatment strategies through precise targeting and modulation of the gut microbiome for improved health outcomes and disease management is promising. Their transformational influence is projected to be powered by integration with modern technology and customized formulas. Further in-vivo studies are required for the validation of nanosynbiotics as nutraceuticals.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Inteligencia Artificial , COVID-19 , SARS-CoV-2 , Composición de Medicamentos/métodos , Nanopartículas/química , Inulina/química
4.
Int J Biol Macromol ; 279(Pt 2): 135091, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214220

RESUMEN

This study aimed to evaluate the efficiency of edible films made from chlorogenic acid/chitosan (CGA/CS) nanoparticles combined with photodynamic technology (PDT). Hydroxypropyl starch (HS) and κ-carrageenan (KC) were used as the main ingredients in the preservation of Mongolian cheese under the PDT condition. The mechanical characteristics, water vapor adsorption, solubility, permeability, and release of chlorogenic acid in aqueous media were evaluated. The incorporation of CGA/CS significantly enhanced the tensile strength and barrier characteristics of the edible films. The antimicrobial efficacy of the edible film was assessed over a period of 7 days while the cheese was being stored, followed by PDT application. The use of antimicrobial PDT did not cause lipid oxidation in cheese samples. Additionally, the combination of CGA/CS@HS/KC helped to reduce fat oxidation in Mongolian cheese. Utilizing an edible film in conjunction with PDT presents a viable solution for prolonging the shelf life of Mongolian cheese while maintaining its sensory attributes and nutritional qualities.

5.
Eur Phys J E Soft Matter ; 47(8): 53, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097838

RESUMEN

Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure-property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.


Asunto(s)
Fármacos Cardiovasculares , Relación Estructura-Actividad Cuantitativa , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Fenómenos Químicos , Humanos
6.
Int J Biol Macromol ; 278(Pt 4): 134695, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151861

RESUMEN

The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.


Asunto(s)
Materiales Biocompatibles , Celulosa , Celulosa/química , Celulosa/análogos & derivados , Materiales Biocompatibles/química , Embalaje de Alimentos/métodos , Humanos
7.
BMC Plant Biol ; 24(1): 820, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215226

RESUMEN

Green synthesis is an easy, safe, and environmentally beneficial nanoparticle creation method. It is a great challenge to simultaneously improve the capping and stabilizing agent carrier separation efficiency of photocatalysts. Herein, Zn-doped Titanium dioxide (TiO2) nanoparticles with high exposure of 360 nm using a UV/visible spectrophotometer were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. We have optimized the different parameters like concentration, time, and temperature. The peak for TiO2 is located at 600 cm-1 in FTIR. A scanning electron microscope revealed that TiO2 has a definite shape and morphology. The synthesized Zn-doped TiO2NPs were applied against various pathogens to study their anti-bacterial potentials. The anti-bacterial activity of Zn-doped TiO2 has shown robust against two gram-ve bacteria (Salmonella and Escherichia coli) and two gram + ve bacteria (Staphylococcus epidermidis and Staphylococcus aureus). Synthesized Zn-doped TiO2 has demonstrated strong antifungal efficacy against a variety of fungi. Moreover, doping TiO2 nanoparticles with metal oxide greatly improves their characteristics; as a result, doped metal oxide nanoparticles perform better than doped and un-doped metal oxide nanoparticles. Compared to pure TiO2, Zn-doped TiO2 nanoparticles exhibit considerable applications including antimicrobial treatment and water purification.


Asunto(s)
Titanio , Zanthoxylum , Zinc , Titanio/química , Zinc/química , Zinc/farmacología , Zanthoxylum/química , Tecnología Química Verde , Nanopartículas del Metal/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/química
9.
Int J Biol Macromol ; 276(Pt 2): 133920, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029840

RESUMEN

Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.


Asunto(s)
Pollos , Películas Comestibles , Conservación de Alimentos , Litsea , Manihot , Carne , Aceites Volátiles , Almidón , Animales , Almidón/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Manihot/química , Conservación de Alimentos/métodos , Litsea/química , Carne/análisis , Embalaje de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacología , Solubilidad , Carboximetilcelulosa de Sodio/química
10.
Sci Rep ; 14(1): 17336, 2024 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068301

RESUMEN

Hepatocellular carcinoma (HCC) incidence varies widely around the world and is impacted by factors such as the prevalence of chronic hepatitis B and C infections, alcohol intake, and access to healthcare. The proteins (BRAF_human, VGFR3_human, EGFR_human and UFO_human) play a vital role in hepatocellular carcinoma prognosis, which involves cell proliferation, cell growth, transmission of extracellular signals to the cell nucleus and consequently regulating many other cellular processes. Fostamatinib has been studied for its possible use in the treatment of hepatocellular cancer because it is a more convenient therapy choice for patients and has minor side effects on the human body. However, resveratrol phytochemical has been investigated for its potential use in the prevention and treatment of a wide range of disorders, including cancer, cardiovascular disease, diabetes, and neurological problems due to its frequently antioxidant, anti-inflammatory, and immune-modulating characteristics, which can aid in the prevention of chronic illnesses. This study developed de novo-based fragment-optimized resveratrol (FOR), enhancing therapeutic potential and lowering toxicity. The docking study was performed with four target proteins, and the findings reveal that the vascular endothelial growth factor receptor 3 protein possessed the highest binding energy values of -7.6 kcal/mol with FOR. Additionally, it completely fulfills the criteria of drug-likeliness rules. Thus, FOR proves to be an efficient drug candidate for future in-vivo studies against hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Diseño de Fármacos , Neoplasias Hepáticas , Simulación del Acoplamiento Molecular , Resveratrol , Resveratrol/farmacología , Resveratrol/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Simulación por Computador
11.
Artículo en Inglés | MEDLINE | ID: mdl-39026396

RESUMEN

This study presents a comprehensive genomic exploration, biochemical characterization, and the identification of antibiotic resistance and specialty genes of Pediococcus acidilactici BCB1H strain. The functional characterization, genetic makeup, biological activities, and other considerable parameters have been investigated in this study with a prime focus on antibiotic resistance and specialty gene profiles. The results of this study revealed the unique susceptibility patterns for antibiotic resistance and specialty genes. BCB1H had good in vitro probiotic properties, which survived well in simulated artificial gastrointestinal fluid, and exhibited acid and bile salt resistance. BCB1H didn't produce hemolysis and had certain antibiotic sensitivity, making it a relatively safe LAB strain. Simultaneously, it had good self-coagulation characteristics and antioxidant activity. The EPS produced by BCB1H also had certain antioxidant activity and hypoglycemic function. Moreover, the genome with a 42.4 % GC content and a size of roughly 1.92 million base pairs was analyzed in the genomic investigations. The genome annotation identified 192 subsystems and 1,895 genes, offering light on the metabolic pathways and functional categories found in BCB1H. The identification of specialty genes linked to the metabolism of carbohydrates, stress response, pathogenicity, and amino acids highlighted the strain's versatility and possible uses. This study establishes the groundwork for future investigations by highlighting the significance of using multiple strains to investigate genetic diversity and experimental validation of predicted genes. The results provide a roadmap for utilizing P. acidilactici BCB1H's genetic traits for industrial and medical applications, opening the door to real-world uses in industries including food technology and medicine.

12.
Front Biosci (Landmark Ed) ; 29(7): 246, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39082330

RESUMEN

BACKGROUND: Pneumocystis jirovecii is the most emerging life-threating health problem that causes acute and fatal pneumonia infection. It is rare and more contagious for patients with leukemia and immune-deficiency disorders. Until now there is no treatment available for this infection therefore, it is needed to develop any treatment against this pathogen. METHODS: In this work, we used comparative proteomics, robust immune-informatics, and reverse vaccinology to create an mRNA vaccine against Pneumocystis jirovecii by targeting outer and transmembrane proteins. Using a comparative subtractive proteomic analysis of two Pneumocystis jirovecii proteomes, a distinct non-redundant Pneumocystis jirovecii (strain SE8) proteome was chosen. Seven Pneumocystis jirovecii transmembrane proteins were chosen from this proteome based on hydrophilicity, essentiality, virulence, antigenicity, pathway interaction, protein-protein network analysis, and allergenicity. OBJECTIVE: The reverse vaccinology approach was used to predict the immunogenic and antigenic epitopes of major histocompatibility complex (MHC) I, II and B-cells from the selected proteins on the basis of their antigenicity, toxicity and allergenicity. These immunogenic epitopes were linked together to construct the mRNA-based vaccine. To enhance the immunogenicity, suitable adjuvant, linkers (GPGPG, KK, and CYY), and PRDRE sequences were used. RESULTS: Through predictive modeling and confirmation via the Ramachandran plot, we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: -0.271, instability index: 39.53, antigenicity: 1.0428). The physiochemical profiling of vaccine construct was predicted it an antigenic, efficient, and potential vaccine. Notably, strong interactions were observed between the vaccine construct and TLR-3/TLR-4 (-1301.7 kcal/mol-1 and -1374.7 kcal/mol-1). CONCLUSIONS: The results predicted that mRNA-based vaccines trigger a cellular and humoral immune response, making the vaccine potential candidate against Pneumocystis jirovecii and it is more suitable for in-vitro analysis and validation to prove its effectiveness.


Asunto(s)
Pneumocystis carinii , Neumonía por Pneumocystis , Proteómica , Vacunología , Vacunas de ARNm , Proteómica/métodos , Pneumocystis carinii/inmunología , Pneumocystis carinii/genética , Humanos , Vacunología/métodos , Vacunas de ARNm/inmunología , Neumonía por Pneumocystis/prevención & control , Neumonía por Pneumocystis/inmunología , Neumonía por Pneumocystis/microbiología , Vacunas Fúngicas/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/genética , Proteoma/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Desarrollo de Vacunas/métodos , Vacunas Sintéticas/inmunología
13.
Artículo en Inglés | MEDLINE | ID: mdl-39007228

RESUMEN

New series of benzimidazole incorporating piperazine moieties in single molecular framework has been reported. The structures of the synthesized derivatives were assigned by 1H-NMR, 13C-NMR, and HR-MS techniques. The hybrid derivatives were evaluated for their acetylcholinesterase and butyrylcholinesterase inhibition effect. All the synthesized analogs showed good to moderate inhibitory effect ranging from IC50 value 0.20 ± 0.01 µM to 0.50 ± 0.10 µM for acetylcholinesterase and from IC50 value 0.25 ± 0.01 µM to 0.70 ± 0.10 µM for butyrylcholinesterase except one that showed least potency with IC50 value 1.05 ± 0.1 µM and 1.20 ± 0.1 µM. The differences in inhibitory potential of synthesized compounds were due to the nature and position of substitution attached to the main ring. Additionally, molecular docking study was carried out for most active in order to explore the binding interactions established by ligand (active compounds) with the active residues of targeted AChE & BuChE enzyme.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38996180

RESUMEN

A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and phenylalanine that darkens the urine and accumulates in connective tissues which causes an agonizing arthritis. Employing the use of deep learning artificial intelligence (AI) drug design, this study aims to alleviate the current toxicity of the AKU drugs currently in use, particularly nitisinone, by utilizing the natural flavanol kaempferol molecule as a 4-hydroxyphenylpyruvate dioxygenase inhibitor. Kaempferol was employed to generate three effective de novo drug candidates targeting the enzyme 4-hydroxyphenylpyruvate dioxygenase using an AI drug design tool. We present novel AIK formulations in the present study. The AIK's (Artificial Intelligence Kaempferol) examination of drug-likeliness among the three led to its choice as a possible target. The toxicity assessment research of AIK demonstrates that it is not only safer to use than other treatments, but also more efficient. The docking of the AIGT with 4-hydroxyphenylpyruvate dioxygenase, which revealed a binding affinity of around -9.099 kcal/mol, highlights the AIK's potential as a therapeutic candidate. An innovative approach to deal with challenging circumstances is thus presented in this study by new formulations kaempferol that have been meticulously designed by AI. The results of the in vitro tests must be confirmed in vivo, even though AI-designed AIK is effective and sufficiently safe as computed.

15.
Physiol Plant ; 176(3): e14363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837786

RESUMEN

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Asunto(s)
Agaricales , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Agaricales/genética , Agaricales/clasificación , Evolución Molecular , Genoma Fúngico/genética
16.
Int J Biol Macromol ; 274(Pt 1): 133307, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908637

RESUMEN

This article compared the effects of hot air drying (HAD), infrared drying (IRD), and cold plasma (CP) as a pretreatment on the structure, quality, and digestive characteristics of starch extracted from yam. As the most commonly used drying method, HAD was used as a control. SEM and CLSM images showed that all treatments preserve the integrity of the yam starch. CP caused some cracks and breaks in the starch granules. IRD did not destroy the crystal structure of starch molecules, but made the spiral structure tighter and increased short-range orderliness. However, CP led to the depolymerization and dispersion of starch molecular chains, resulting in a decrease in average molecular weight and relative crystallinity. These molecular conformation changes caused by different processes led to differences in solubility, swelling power, pasting parameters, digestion characteristics, and functional characteristics. This study provided an important basis for the reasonable drying preparation and utilization of yam starch.


Asunto(s)
Desecación , Dioscorea , Gases em Plasma , Solubilidad , Almidón , Almidón/química , Dioscorea/química , Gases em Plasma/química , Desecación/métodos , Peso Molecular
17.
Artículo en Inglés | MEDLINE | ID: mdl-38898802

RESUMEN

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

19.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38812301

RESUMEN

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Asunto(s)
Vacunas Bacterianas , Biología Computacional , Listeria monocytogenes , Listeriosis , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Listeria monocytogenes/inmunología , Vacunas Bacterianas/inmunología , Vacunas de Subunidad/inmunología , Listeriosis/prevención & control , Listeriosis/inmunología , Listeriosis/microbiología , Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Humanos , Epítopos/inmunología , Simulación de Dinámica Molecular , Animales , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/inmunología , Inmunoinformática
20.
BMC Med Genomics ; 17(1): 125, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715056

RESUMEN

Naegleria fowleri, also known as brain-earing amoeba, causes severe and rapidly fatal CNS infection in humans called primary amebic meningoencephalitis (PAM). The DNA from the N. fowleri clinical isolate was sequenced for circular extrachromosomal ribosomal DNA (CERE - rDNA). The CERE contains 18 S, 5.8 S, and 28 S ribosomal subunits separated by internal transcribed spacers, 5 open reading frames (ORFs), and mostly repeat elements comprising 7268 bp out of 15,786 bp (46%). A wide variety of variations and recombination events were observed. Finally, the ORFs that comprised only 4 hypothetical proteins were modeled and screened against Zinc drug-like compounds. Two compounds [ZINC77564275 (ethyl 2-(((4-isopropyl-4 H-1,2,4-triazol-3-yl) methyl) (methyl)amino) oxazole-4-carboxylate) and ZINC15022129 (5-(2-methoxyphenoxy)-[2,2'-bipyrimidine]-4,6(1 H,5 H)-dione)] were finalized as potential druggable compounds based on ADME toxicity analysis. We propose that the compounds showing the least toxicity would be potential drug candidates after laboratory experimental validation is performed.


Asunto(s)
ADN Ribosómico , Secuenciación de Nucleótidos de Alto Rendimiento , Naegleria fowleri , Naegleria fowleri/genética , Humanos , ADN Ribosómico/genética , Encéfalo/metabolismo , Genotipo , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA