Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750264

RESUMEN

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Asunto(s)
Cadmio , Inflamación , Estrés Oxidativo , Piroptosis , Fumarato de Quetiapina , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Animales , Cadmio/toxicidad , Fumarato de Quetiapina/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Antioxidantes/farmacología , Antiinflamatorios/farmacología , FN-kappa B/metabolismo
2.
Toxicol Mech Methods ; 33(8): 675-687, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37403423

RESUMEN

Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1ß, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.


Asunto(s)
Cadmio , FN-kappa B , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Cadmio/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Toll-Like 4/metabolismo , Mirtazapina/uso terapéutico , Mirtazapina/farmacología , Estrés Oxidativo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37434588

RESUMEN

Background: Breast cancer is one of the most common malignancies among women. Recent studies revealed that differentially methylated regions (DMRs) are implicated in regulating gene expression. The goal of this research was to determine which genes and pathways are dysregulated in breast cancer when their promoters are methylated in an abnormal way, leading to differential expression. Whole-genome bisulfite sequencing was applied to analyze DMRs for eight peripheral blood samples collected from five Saudi females diagnosed with stages I and II of breast cancer aligned with three normal females. Three of those patients and three normal samples were used to determine differentially expressed genes (DEG) using Illumina platform NovaSeq PE150. Results: Based on ontology (GO) and KEGG pathways, the analysis indicated that DMGs and DEG are closely related to associated processes, such as ubiquitin-protein transferase activity, ubiquitin-mediated proteolysis, and oxidative phosphorylation. The findings indicated a potentially significant association between global hypomethylation and breast cancer in Saudi patients. Our results revealed 81 differentially promoter-methylated and expressed genes. The most significant differentially methylated and expressed genes found in gene ontology (GO) are pumilio RNA binding family member 1 (PUM1) and zinc finger AN1-type containing 2B (ZFAND2B) also known as (AIRAPL). Conclusion: The essential outcomes of this study suggested that aberrant hypermethylation at crucial genes that have significant parts in the molecular pathways of breast cancer could be used as a potential prognostic biomarker for breast cancer.

4.
Front Microbiol ; 14: 1135806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089535

RESUMEN

Non-typhoidal Salmonella is the tremendously predominant source of acquired foodborne infection in humans, causing salmonellosis which is a global threat to the healthcare system. This threat is even worse when it is combined with the incidence of multidrug-resistant Salmonella strains. Bacteriophage therapy has been proposed as a promising potential candidate to control a diversity of foodborne infective bacteria. The objective of this study designed to isolate and characterize lytic phages infecting zoonotic multi-drug resistant and strong biofilm producer Salmonella enterica serovar Enteritidis EG.SmE1 and then apply the isolated phage/s as a biocontrol agent against infections in ready-to-eat food articles including milk, water, apple juice, and chicken breasts. One lytic phage (LPSent1) was selected based on its robust and stable lytic activity. Phage LPSent1 belonged to the genus Jerseyvirus within the Jerseyvirinae subfamily. The lysis time of phage LPSent1 was 60 min with a latent period of 30 min and each infected cell burst about 112 plaque-forming units. Phage LPSent1 showed a narrow host range. Furthermore, the LPSent1 genome did not encode any virulence or lysogenic genes. In addition, phage LPSent1 had wide pH tolerance, prolonged thermal stability, and was stable in food articles lacking its susceptible host for 48 h. In vitro applications of phage LPSent1 inhibited free planktonic cells and biofilms of Salmonella Enteritidis EG.SmE1 with a lower occurrence to form phage-resistant bacterial mutants which suggests promising applications on food articles. Application of phage LPSent1 at multiplicities of infections of 100 or 1000 showed significant inhibition in the bacterial count of Salmonella Enteritidis EG.SmE1 by 5 log10/sample in milk, water, apple juice, and chicken breasts at either 4°C or 25°C. Accordingly, taken together these findings establish phage LPSent1 as an effective, promising candidate for the biocontrol of MDR Salmonella Enteritidis in ready-to-eat food.

5.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978364

RESUMEN

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4-60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans.

6.
Heliyon ; 9(1): e13077, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747932

RESUMEN

Foodborne infections caused by Salmonella spp. are among the most common foodborne diseases in the world. We isolated a lytic phage against extended-spectrum beta-lactam producing S. Enteritidis strain PT1 derived from chicken carcass. Results from electronmicrography indicated that phiPT1 belonged to the family, Siphoviridae, in the order, Caudovirales. Phage phiPT1 was stable at temperatures from 4 °C to 60 °C and inactivated at 90 °C. phiPT1 retained a high titer from pH 4 to pH 10 for at least 1 h. Nevertheless, it displayed a significant decrease (p < 0.05) in titer at pH 11 and 12, with phage titers of 5.5 and 2.4 log10 PFU/mL, respectively. The latent time and burst size of phiPT1 were estimated to be 30 min and 252 PFU/infected cell, respectively. The virulence of phage phiPT1 was evaluated against S. Enteritidis strain PT1 at different MOIs. phiPT1 reduced Salmonella proliferation relative to the negative control (MOI 0) at all MOIs (P < 0.05). However, there is no significant difference among the MOIs (P > 0.05). The phage-antibiotic combination analysis (PAS) indicated that synergism was not detected at higher phiPT1 titer (1012 PFU/mL) with all tested antibiotics at all subinhibitory concentrations. However, synergistic activities were recorded at 0.25 × MIC of four tested antibiotics: cefixime, gentamicin, ciprofloxacin, and aztreonam in combination with phage at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism was detected for all antibiotics (0.1 × MIC) except meropenem and colistin in combination with phiPT1 at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism also displayed at the lowest concentrations of all antibiotics (0.01 MIC) in combination with phiPT1 at all titers except 1012 PFU/mL. Such characteristic features make phiPT1 to be a potential candidate for therapeutic uses.

7.
Pathogens ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36558814

RESUMEN

Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus "Chivirus" within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses.

8.
Trop Med Infect Dis ; 7(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36355898

RESUMEN

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name "big six" because they cause severe illness and death in humans and the United States Department of Agriculture declared these serogroups as food contaminants. The lack of fast and efficient diagnostic methods exacerbates the public impact of the disease caused by these serogroups. Numerous outbreaks have been reported globally and most of these outbreaks were caused by ingestion of contaminated food or water as well as direct contact with reservoirs. Livestock harbor a variety of non-O157 STEC serovars that can contaminate meat and dairy products, or water sources when used for irrigation. Hence, effective control and prevention approaches are required to safeguard the public from infections. This review addresses the disease characteristics, reservoirs, the source of infections, the transmission of the disease, and major outbreaks associated with the six serogroups ("big six") of non-O157 STEC encountered all over the globe.

9.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291042

RESUMEN

Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Enfermedades Transmitidas por los Alimentos , Humanos , Microbiología de Alimentos , Técnicas Biosensibles/métodos , Enfermedades Transmitidas por los Alimentos/diagnóstico , Enfermedades Transmitidas por los Alimentos/microbiología , Bacterias , Solventes
10.
Pharmgenomics Pers Med ; 15: 705-720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898556

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods: This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results: The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion: CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.

11.
Int J Inflam ; 2022: 9099136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668817

RESUMEN

Defensin Alpha 4 (DEFA4) is the fourth member of the Alpha Defensins family known as a part of antimicrobial peptides in the innate immune system. DEFA4 has a strong preference to kill Gram-negative bacteria more than Gram-positive bacteria. In addition, DEFA4 exhibits antiviral activity against human immunodeficiency virus type 1 (HIV-1) in vitro. Moreover, DEFA4 can act as an inhibitor of corticosterone production (Corticostatin). On the other hand, alternations in DEFA4 gene expression have been reported in different disorders such as diseases related to inflammation and immunity dysfunction, brain-related disorders, and various cancers. The up-regulation of DEFA4 appears to be involved in the malignant transformation or aggressive form of cancer. Interestingly, the modified version of DEFA4 fragment (1-11) was potent and efficient against antibiotic-resistant bacteria. This review provides a general background abSaudi Arabia out DEFA4 and sheds light on changes in DEFA4 gene expression in different diseases. The paper also discusses other aspects related to DEFA4 as an antimicrobial and antiviral agent. The research was conducted based on available articles obtained from databases starting from 1988 to the present.

12.
Pharmgenomics Pers Med ; 15: 131-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221709

RESUMEN

BACKGROUND: DNA methylation (DNAm) is one of the main epigenetic mechanisms that affects gene expression without changing the underlying DNA sequence. Aberrant DNAm has an implication in different human diseases such as cancer, schizophrenia, and autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that affects behavior, learning, and communication skills. Acyl-CoA synthetase family member 3 (ACSF3) encodes malonyl-CoA synthetase that is involved in the synthesis and oxidation of fatty acids. The dysregulation in such gene has been reported in combined malonic and methylmalonic aciduria associated with neurological symptoms such as memory problems, psychiatric diseases, and/or cognitive decline. This research aims to study DNAm in the transcription factor (TF) binding site of ACSF3 in Saudi autistic children. To determine whether the DNAm of the TF-binding site is a cause or a consequence of transcription regulation of ACSF3. METHODS: RT-qPCR and DNA methylight qPCR were used to determine the expression and DNAm level in the promoter region of ACSF3, respectively. DNA and RNA were extracted from 19 cases of ASD children and 18 control samples from their healthy siblings. RESULTS: The results showed a significant correlation between the gene expression of ACSF3 and specificity protein 1 (SP1) in 17 samples of ASD patients, where both genes were upregulated in 9 samples and downregulated in 8 samples. CONCLUSION: Although this study found no DNAm in the binding site of SP1 within the ACSF3 promoter, the indicated correlation highlights a possible role of ACSF3 and SP1 in ASD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA