Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 142: 105831, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075528

RESUMEN

This study investigates the compressive deformation and the effect of structural architecture on the compressive strength of bioprocessed mycelium biocomposites reinforced with laterite particles. In the mycelium blocks, lignocellulosic hemp hurds function as reinforcing and nutritional substrates. The mycelium acts as a supportive matrix, binding the hemp hurds and the laterite particles which are integrated for further reinforcement to improve the compressive strength of the composite. The compressive behavior of the composites is elucidated using a combined approach of experimental and theoretical studies. The deformation mechanisms are investigated via in-situ observations of the specimens under uniaxial compressive loading. The experiments show that the compressive deformation results in progressive micro-buckling in slender specimens, whereas thicker samples exhibit a soft elastic response at small strain levels followed by continuous stiffening at larger strains. Based on the experimental observations and the morphological characterization, a column buckling analysis was developed for the mycelium-hemp composites to further explain the observed deformation phenomena.


Asunto(s)
Modelos Teóricos , Micelio , Micelio/química , Fuerza Compresiva , Presión
2.
Heliyon ; 7(3): e06597, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33869844

RESUMEN

This investigation prospects the feasibility of optimizing the mechanical behavior and dimensional stability of termite's mound soil through alkaline activation. The raw aluminosilicate (termites' soil) was used without any pre-thermal treatment and natural occurring potash was used as the alkaline activator. Different activation level and different initial curing temperature were adopted to examine the effect of the initial temperature and the activator concentration on the Alkali Activated Termite Soil (AATS). Similarly, Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Fourier Transform Infra-Red Spectroscopy (FTIR) were conducted to characterize the microstructure, to determine the crystallinity of the constituents and to identify the functional groups present within the specimens. These characterizations were carried out on the specimens at 15 days after their moulding. The compressive strength was determined for 7, 15 and 90 days to illuminate the fundamental of the optimization process. Results showed that the optimal initial curing temperature was 60 °C for the oven-dry regime at 3wt% activator with compressive strength of 2.56, 4.38 and 7.79 MPa at 7, 15 and 90 days respectively. From the mechanical performances results, the alkali stabilized termite's soil can be used as masonry elements predominantly submitted to compression. The repercussions of the results are analyzed for potential applications of the Alkaline Activation techniques as an environmental-friendly approach to obtain renewable and sustainable building materials at low cost with low energy consumption henceforth replicable in most of the regions.

3.
J Mech Behav Biomed Mater ; 108: 103750, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32310105

RESUMEN

This paper presents the results of theoretical and experimental studies of the compressive deformation of bamboo (Bambusa Vulgaris-Schrad) in the middle section. The deformation mechanisms are elucidated via in-situ observations of deformation in specimens oriented for loading in directions that are either longitudinal or transverse. Compressive deformation is shown to result in progressive micro-buckling and kink band formation. The onset of micro-buckling is also shown to be well predicted by an Euler buckling model. The critical loads for failure in the transverse orientation are also shown to be consistent with the conditions for shear yielding in the plies with fibers that are oriented in an orthogonal direction to the loading axis.


Asunto(s)
Bambusa , Fuerza Compresiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA