Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 255: 117348, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436190

RESUMEN

In this study, solvent exchange method was applied as a post-casting solvent treatment to tune the porosity and improve the performance of cellulose acetate/cellulose triacetate forward osmosis (CA/CTA FO) membrane. Ethanol and n-hexane were both used for this treatment as the first and second solvent, respectively. Pristine and treated CA/CTA FO membranes with different thicknesses were characterized using FESEM and adsorption/desorption analysis and also evaluated in terms of the intrinsic transport properties and structural parameter, and performance. The results showed that the treated membranes contained more micropores and mesopores than the pristine membranes. Moreover, the treatment was able to increase reverse salt flux and pure water flux by 65 and 20 %, respectively. These improvements were due to the increase in selectivity (55 %) and the reduction in structural parameter (40 %). Hence, the proposed post-casting solvent treatment has been introduced as a method for improvement of the CA/CTA FO membranes performance.

3.
ACS Appl Mater Interfaces ; 7(18): 9758-66, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25871444

RESUMEN

Arsenic (As) is the world's most hazardous chemical found in drinking water of many countries; therefore, there is an urgent need for the development of low-cost adsorbents for its removal. Here, we report a highly versatile and synthetic route for the preparation of a three-dimensional (3D) graphene-iron oxide nanoparticle aerogel composite for the efficient removal of As from contaminated water. This unique three-dimensional (3D) interconnected network was prepared from natural graphite rocks with a simple reaction, without the use of harsh chemicals, which combines with the exfoliation of graphene oxide (GO) sheets via the reduction of ferrous ion to form a graphene aerogel composite decorated with iron oxide nanoparticles. The prepared adsorbent showed outstanding absorption performance for the removal of As from contaminated water, because of its high surface-to-volume ratio and characteristic pore network in the 3D architecture. The performed case study using real drinking water contaminated with As under batch conditions showed successful removal of arsenic to the concentration recommended by the World Health Organisation (WHO).

4.
ACS Appl Mater Interfaces ; 7(22): 11815-23, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25835089

RESUMEN

A simple synthetic approach for the preparation of graphene-diatom silica composites in the form of self-assembled aerogels with three-dimensional networks from natural graphite and diatomite rocks is demonstrated for the first time. Their adsorption performance for the removal of mercury from water was studied as a function of contact time, solution pH, and mercury concentration to optimize the reaction conditions. The adsorption isotherm of mercury fitted well with the Langmuir model, representing a very high adsorption capacity of >500 mg of mercury/g of adsorbent. The prepared aerogels exhibited outstanding adsorption performance for the removal of mercury from water, which is significant for environmental applications.

5.
Colloids Surf B Biointerfaces ; 120: 222-8, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24916284

RESUMEN

Theoretical predictions of interaction energies for membrane-biopolymer foulant pairs were used to compare the fouling tendencies of a virgin commercial polyamide reverse osmosis (RO) membrane with a amino acid 3-(3,4-dihydroxyphenyl)-l-alanine (l-DOPA) coated RO membrane. Lifshitz-van der Waals (LW) and Lewis acid-base (AB) surface tension components of the membranes were determined based on contact angle results using the van Oss approach. From these values, the LW and AB components of the free energy of adhesion between membrane and foulants were calculated. Electrostatic (EL) double layer interaction energies between the membrane and foulants were also estimated using the measured surface charge data of the membranes and fouling agents. Bovine serum albumin (BSA) and alginic acid sodium salt (alginate) were used as model biopolymers causing membrane fouling. Based on the calculated adhesion free energies, acid-base interactions were found to have the strongest impact on the adhesion of both BSA and alginate to the either membranes surfaces. It was found that l-DOPA modification has significantly lowered acid-base interaction affinity toward the adhesion of both foulants studied. On the basis of calculated free energies of adhesion, lower fouling tendency of the l-DOPA modified membrane was expected. The accelerated fouling tests indicated a lower flux decline rate for the modified membrane and confirmed the results obtained from theory.


Asunto(s)
Incrustaciones Biológicas , Biopolímeros/química , Levodopa/química , Membranas Artificiales , Nylons/química , Ósmosis , Adhesividad , Animales , Bovinos , Tamaño de la Partícula , Polimerizacion , Albúmina Sérica Bovina/química , Electricidad Estática , Propiedades de Superficie , Termodinámica
6.
Nanotechnology ; 25(4): 045501, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24398819

RESUMEN

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

7.
Water Sci Technol ; 68(4): 901-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985522

RESUMEN

A major obstacle in the widespread application of microfiltration membranes in the wet separation processes such as wastewater treatment is the decline of permeates flux as a result of fouling. This study reports on the surface modification of cellulose acetate (CA) microfiltration membrane with amino acid L-3,4-dihydroxy-phenylalanine (L-DOPA) to improve fouling resistance of the membrane. The membrane surface was characterised using Fourier transform infrared spectroscopy (FTIR), water contact angle and zeta potential measurement. Porosity measurement showed a slight decrease in membrane porosity due to coating. Static adsorption experiments revealed an improved resistance of the modified membranes towards the adhesion of bovine serum albumin (BSA) as the model foulant. Dead end membrane filtration tests exhibited that the fouling resistance of the modified membranes was improved. However, the effect of the modification depended on the foulant solution concentration. It is concluded that L-DOPA modification is a convenient and non-destructive approach to enable low-BSA adhesion surface modification of CA microfiltration membranes. Nevertheless, the extent of fouling resistance improvement depends on the foulant concentration.


Asunto(s)
Incrustaciones Biológicas , Celulosa/análogos & derivados , Filtración/instrumentación , Filtración/métodos , Levodopa/química , Membranas Artificiales , Adsorción , Celulosa/química , Albúmina Sérica Bovina/química , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA