Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1428808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135871

RESUMEN

The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.

2.
Int J Biol Macromol ; 211: 741-753, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35504418

RESUMEN

The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensured that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggest that temperature change did not affect the overall structure of PCL, but it might altered the temperature-dependent PCL functional changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function and they fluctuated much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.


Asunto(s)
Lipasa , Psychrobacter , Biopelículas , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Lipasa/química , Filogenia , Psychrobacter/genética , Solventes/química , Especificidad por Sustrato , Temperatura
3.
Int J Biol Macromol ; 116: 502-512, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29729340

RESUMEN

In this present study, a gene (ent-B) encoding the bacteriocin enterocin-B was cloned, overexpressed and purified from Enterococcus faecium por1. The molecular weight of the bacteriocin enterocin-B was observed around 7.2 kDa and exhibited antimicrobial activity against several human pathogenic bacteria. The antimicrobial activity of cloned enterocin-B was increased effectively by combining with another bacteriocin enterocin-A from the same microorganism. Protein-protein docking and molecular dynamics simulation studies revealed that the bacteriocin enterocin-B is interacting with enterocin-A and formation of a heterodimer (enterocin A + B). The heterodimer of bacteriocin enterocin-A + B exhibited potential anti-bacterial, anti-biofilm activity against Staphylococcus aureus, Acinetobacter baumannii, Listeria monocytogenes and Escherichia coli. The bacteriocin enterocin-B, A and heterodimer of bacteriocin enterocin A + B showed no haemolysis on human RBC cells. This is the first report that the cell growth inhibitory activity of the bacteriocin enterocin B against HeLa, HT-29 and AGS human cancer cells and this cell growth inhibitory activity was significantly increased when cancer cells treated with the heterodimer of bacteriocins enterocin-A + B. The cell growth inhibitory activity of the bacteriocin enterocin-B and the heterodimer of bacteriocin enterocin-A + B were not observed in non-cancerous INT-407 cells (intestinal epithelial cells).


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Bacteriocinas/genética , Bacteriocinas/farmacología , Secuencia de Aminoácidos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Células HT29 , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Alineación de Secuencia
4.
Front Microbiol ; 9: 3063, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619149

RESUMEN

The potent antioxidant probiotic strains Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 were assessed for anti-inflammatory properties in carrageenan (acute) and complete Freund's adjuvant-induced inflammation (chronic) models in the present study. The two probiotic strains were administered orally along with feed to the Wistar albino male rats as whole cell as well as microencapsulated form. The following experiments were performed to evaluate the anti-inflammatory properties of probiotic strains and the results were observed that the encapsulated and unencapsulated probiotic strains have exhibited statistically significant decrease in paw thickness. Percentage of inhibition in paw thickness of microencapsulated probiotic bacteria (Group VIII), unencapsulated strains (Group IX) were revealed 85 ± 13% and 77 ± 25%, respectively. In Hematoxylin and Eosin staining, results were revealed that the probiotic strains were exhibited anti-inflammatory effects on inflammation-induced paw tissues. qRT-PCR studies revealed upregulation of anti-inflammatory cytokine genes and down-regulation pro-inflammatory cytokine genes in probiotic-treated rat paw tissues. Further, the expression of anti-inflammatory and pro-inflammatory cytokines were examined using immunohistochemistry and ELISA methods. The probiotic administered rat paw tissue in different groups have exhibited the low level of lipid peroxides formation and higher anti-oxidant activities when compared to the control and inflammation control tissues.

5.
Int J Biol Macromol ; 103: 47-56, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28478053

RESUMEN

A gene coding lipase from Bacillus sp. PU1 was cloned and expressed in E. coli BL21(DE3) pLysS. The purified lipase has a molecular weight of 23kDa, is highly alkaline (pH range 8-10) and mesophilic (20-50°C). Three dimensional structure of the lipase was modeled by comparative homology and identified as a typical serine lipase by the presence of conserved Ser77, Asp133, His156. The molecular stability and behavior of the lipase was carried out using MD simulation studies at different pH and temperature was performed in comparison with biochemical analysis. Structural modifications of the lipase under these conditions were trapped by dihedral based FEL analysis and the functional loops (loop-H5/B4 and loop-H6/B5 of lipase) are identified which would cause the catalytic behavior of the lipase by high flexibility. Further characteristic feature of lipase are observed as follows; SDS completely inhibits the lipase activity and enzyme activity is enhanced with non-ionic surfactants. The lipase was highly stable in different organic solvents and also it could tolerate NaCl (0.4-0.8M). This enzyme was found to disrupt the biofilm of tested pathogenic bacterial strains.


Asunto(s)
Bacillus/enzimología , Lipasa/química , Lipasa/metabolismo , Simulación de Dinámica Molecular , Temperatura , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Lipasa/genética , Lipasa/farmacología , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA