RESUMEN
The increasing emergence of Mycobacterium tuberculosis (Mtb) strains resistant to traditional anti-tuberculosis drugs has alarmed health services worldwide. The search for new therapeutic targets and effective drugs that counteract the virulence and multiplication of Mtb represents a challenge for the scientific community. Several studies have considered the erp gene a possible therapeutic target in the last two decades, since its disruption negatively impacts Mtb multiplication. This gene encodes the exported repetitive protein (Erp), which is located in the cell wall of Mtb. In vitro studies have shown that the Erp protein interacts with two putative membrane proteins, Rv1417 and Rv2617c, and the impairment of their interactions can decrease Mtb replication. In this study, we present five nicotine analogs that can inhibit the formation of heterodimers and trimers between these proteins. Through DFT calculations, molecular dynamics, docking, and other advanced in silico techniques, we have analyzed the molecular complexes, and show the effect these compounds have on protein interactions. The results show that four of these analogs can be possible candidates to counteract the pathogenicity of Mtb. This study aims to combine research on the Erp protein as a therapeutic target in the search for new drugs that serve to create new therapies against tuberculosis disease.
Asunto(s)
Mycobacterium tuberculosis , Proteínas de la Membrana/metabolismo , Nicotina/farmacología , Factores de Virulencia/metabolismo , Virulencia , Proteínas Bacterianas/metabolismoRESUMEN
When dental infections occur, various types of antibiotics are used to combat them. The most common antibiotics to be used are tetracycline and chloramphenicol; likewise, the most common bacteria in dental infections are Enterococcus faecalis and Streptococcus mutans. In the present work, we have studied by molecular mechanics methods the interactions of the ribosomal proteins L16 present in Enterococcus faecalis and Streptococcus mutans, identified with UNIPROT code Q839F7 and Q8DS20, respectively. We evaluated the interactions between Q839F7 and Q8DS20 with tetracycline and chloramphenicol antibiotics. We found that the interaction between Enterococcus faecalis (Q839F7) is much more favorable when treated with chloramphenicol. In contrast, the interaction with tetracycline is favored in the case of Q8DS20 present in Streptococcus mutans. This suggests that the treatment should be differentiated depending on the infection level and the presence of some of these bacteria.