Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(16): 19742-19749, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119295

RESUMEN

We present the first demonstration of a 4λ transmitter optical sub-assembly (TOSA) on the coarse wavelength division multiplexing (CWDM) grid, i.e., 20 nm spacing, targeting 400G-FR4 requirements over 2 km. The TOSA is based on uncooled InP external modulated laser (EML) technology and it utilizes four EMLs followed by a CWDM multiplexer. We characterize the performance of the TOSA versus received optical modulation amplitude (OMA), number of equalizer taps, reach, modulation format, TOSA case temperature, and bit rate. Four 53 Gbaud 4-level pulse amplitude modulation (PAM4) RF signals are used to drive the TOSA achieving a net rate of 400 Gb/s. Results reveal that 400 Gb/s can be transmitted over 2 km of single mode fiber (SMF) at a bit error rate (BER) below the KP4- forward error correction (KP4-FEC) threshold (i.e., 2.4 × 10-4) using only a 5 tap feed forward equalizer at the receiver. To the best of our knowledge, this is the first demonstration of 400 Gb/s using a 4λ CWDM TOSA over 2 km of SMF. Moreover, we achieve 400 Gb/s and 600 Gb/s over 20 km and 10 km below KP4-FEC and the 7% hard-decision FEC (HD-FEC) (i.e., 3.8 × 10-3) thresholds, respectively, without optical amplification. Furthermore, we show the performance of the TOSA against temperature, where it shows no significant change in the BER performance from 20 °C to 60 °C. Finally, we compare the performance of PAM2, PAM4, and PAM8 modulation formats where we show the possibility of achieving 400 Gb/s aggregate bit rate using 42 Gbaud PAM8 modulation format at the expense of utilizing a stronger FEC.

2.
Opt Lett ; 28(9): 677-9, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12747704

RESUMEN

A new compact in situ method of measuring the perpendicularity of a plane wave to a substrate is proposed. Off-axis cylindrical Fresnel lenses are used to focus a portion of the incident plane wave onto target lines. The displacement of the focal line from the targets is determined by the degree of angular misalignment. The proposed design has been incorporated into a 10-mm-thick fused-silica module, which enables us to obtain an alignment precision of better than 0.0083 degrees. This method is designed for use in optical assembly procedures that require an incident collimated beam that is normal to the alignment features. Experimental results are presented.

3.
Appl Opt ; 42(14): 2465-81, 2003 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-12749558

RESUMEN

Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.

4.
Appl Opt ; 41(8): 1541-55, 2002 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-11930960

RESUMEN

We report on the implementation of a dense 512-beam free-space optical interconnect linking four optoelectronic VLSI chips at the backplane level. The system presented maximizes the positioning tolerances of the components by use of slow f-number (f/16) Gaussian beams and oversized apertures. A beam-clustering scheme whereby a 4 x 4 array of beams is transmitted by each minilens is used to provide a high channel density. A modular approach is used to decrease the number of degrees of freedom in the system and achieve passive alignment of the modules in the final integration phase. A design overview as well as assembly and experimental results are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA