Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1036381

RESUMEN

@#Objective: Circulation patterns of influenza and other respiratory viruses have been globally disrupted since the emergence of coronavirus disease (COVID-19) and the introduction of public health and social measures (PHSMs) aimed at reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Methods: We reviewed respiratory virus laboratory data, Google mobility data and PHSMs in five geographically diverse regions in Australia and New Zealand. We also described respiratory virus activity from January 2017 to August 2021. Results: We observed a change in the prevalence of circulating respiratory viruses following the emergence of SARS-CoV-2 in early 2020. Influenza activity levels were very low in all regions, lower than those recorded in 2017–2019, with less than 1% of laboratory samples testing positive for influenza virus. In contrast, rates of human rhinovirus infection were increased. Respiratory syncytial virus (RSV) activity was delayed; however, once it returned, most regions experienced activity levels well above those seen in 2017–2019. The timing of the resurgence in the circulation of both rhinovirus and RSV differed within and between the two countries. Discussion: The findings of this study suggest that as domestic and international borders are opened up and other COVID-19 PHSMs are lifted, clinicians and public health professionals should be prepared for resurgences in influenza and other respiratory viruses. Recent patterns in RSV activity suggest that these resurgences in non-COVID-19 viruses have the potential to occur out of season and with increased impact.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260810

RESUMEN

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection (ARI) with the most severe disease in the young and elderly1,2. Non-pharmaceutical interventions (NPIs) and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent3-6. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated states of Australia, Western Australia (WA) and New South Wales (NSW) including the Australian Capital Territory (ACT). Genome sequencing revealed a significant reduction in RSV genetic diversity following COVID-19 emergence except for two genetically distinct RSV-A clades. These clades circulated cryptically, likely localized for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria (VIC) and caused extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic as mitigation measures introduced may result in unusual seasonality, along with larger or more severe outbreaks in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA