Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443978

RESUMEN

The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in vivo neutralization of SARS-CoV-2 is not yet clear. Delineating the role this process plays in antibody-mediated protection will have a great impact on the design of such therapeutics. Here, the Fc of two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, targeting distinct domains of the spike, was engineered to abrogate their Fc-dependent functions. The protective activity of these antibodies was tested against lethal SARS-CoV-2 infections in K18-hACE2 transgenic mice, both before or two days post-exposure in comparison to their original, Fc-active antibodies. Antibody treatment with both Fc-variants similarly rescued the mice from death, reduced viral load and prevented signs of morbidity. In addition, surviving animals developed a significant endogenous immune response towards the virus. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in antibody-mediated protection, which should aid in future design of effective antibody-based therapies.

2.
Nanoscale ; 10(30): 14651-14659, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30033475

RESUMEN

NK cells recognize cancer and viral cells by binding their activating receptors to antigens presenting on the membrane of target cells. Although the activation mechanism of NK cells is a subject of extensive research today, the role of the composition and spatial distribution of activating ligands in NK cell cytotoxicity is barely understood. In this work, we engineered a nanochip whose surface was patterned with matrices of antigens for NKG2D activating receptors. These matrices mimicked the spatial order of the surface of antigen presenting cells with molecular resolution. Using this chip, we elucidated the effect of the antigen spatial distribution on the NK cell spreading and immune activation. We found that the spatial distribution of the ligand within the 100 nm length-scale provides the minimal conditions for NKG2D regulated cell spreading. Furthermore, we found that the immune activation of NK cells requires the same minimal spatial distribution of activating ligands. Above this threshold, both spreading and activation plateaued, confirming that these two cell functions work hand in hand. Our study provides an important insight on the spatial mechanism of the cytotoxic activity of NK cells. This insight opens the way to rationally designed antitumor therapies that harness NK cytotoxicity.


Asunto(s)
Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Nanoestructuras , Microambiente Celular , Antígenos de Histocompatibilidad Clase I , Humanos , Ligandos , Procedimientos Analíticos en Microchip
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA