Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(47): 55073-55081, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967325

RESUMEN

Self-healing materials inspire the next generation of multifunctional wearables and Internet of Things appliances. They expand the realm of thin film fabrication, enabling seamless conformational coverage irrespective of the shape complexity and surface geometry for electronic skins, smart textiles, soft robotics, and energy storage devices. Within this context, the layer-by-layer (LbL) technique is versatile for homogeneously dispersing materials onto various matrices. Moreover, it provides molecular level thickness control and coverage on practically any surface, with poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA) being the most used materials primarily employed in self-healing LbL structures operating at room temperature. However, achieving thin film composites displaying controlled conductivity and healing ability is still challenging under ambient conditions. Here, PEI and PAA are mixed with conductive fillers (gold nanorods, poly(3,4-ethylene dioxythiophene): polystyrenesulfonate (PEDOT:PSS), reduced graphene oxides, and multiwalled carbon nanotubes) in distinct LbL film architectures. Electrical (AC and DC), optical (Raman spectroscopy), and mechanical (nanoindentation) measurements are used for characterizing composite structures and properties. A delicate balance among electrical, mechanical, and structural characteristics must be accomplished for a controlled design of conductive self-healing composites. As a proof-of-concept, four LbL composites were chosen as sensing units in the first reported self-healing e-tongue. The sensor can easily distinguish basic tastes at low molar concentrations and differentiate trace levels of glucose in artificial sweat. The formed nanostructures enable smart coverages that have unique features for solving current technological challenges.

2.
ACS Appl Mater Interfaces ; 13(24): 28049-28056, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34106674

RESUMEN

Perovskite-based semiconductors, such as methylammonium and cesium lead halides (MPbX3: M = CH3NH3+ or Cs+; X = I-, Br-, or Cl-), have attracted immense attention for several applications, including radiation detection, due to their excellent electronic and optical properties.1,2,3,4,5,6 In addition, the combination of perovskites with other materials enables unique device structures. For example, robust and reliable diodes result when combined with metal oxide semiconductors. This device can be used for detection of nonionizing and ionizing radiation. In this paper, we report a unique perovskite single-crystal-based neutron detector using a heterojunction diode based on single-crystal MAPbBr3 and gallium oxide (Ga2O3) thin film. The MAPbBr3/Ga2O3 diodes demonstrate a leakage current of ∼7 × 10-10 A/mm2, an on/off ratio of ∼102, an ideality factor of 1.41, and minimal hysteresis that enables alpha particle, gamma-ray, and neutron detection at a bias as low as (-5 V). Gamma discrimination is further improved by 85% by optimizing the thickness of the perovskite single crystal. The MAPbBr3/Ga2O3 diodes also demonstrate a neutron detection efficiency of ∼3.92% when combined with a 10B neutron conversion layer.

3.
ACS Sens ; 5(9): 2852-2857, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786382

RESUMEN

This paper reports a simple and novel conformal doping strategy for microstructured silicon diodes using enriched 10B for sidewall doping while enabling enhanced neutron sensitivity. Monte-Carlo nuclear particle (MCNP) code simulations were initially used to calculate the neutron detection efficiency in the microstructured diodes as a function of geometry and pitch. A high-temperature anneal in 10B-filled diodes results in a conformal silicon p+ layer along the side walls of the trenches in the diodes. This results in large neutron detection areas and enhanced neutron detection efficiency when compared with planar detectors. With the method discussed here, a thermal neutron detection of ∼21% efficiency is achieved, which is significantly higher than the efficiency achieved in planar detectors (∼3.5%). The higher efficiency is enabled by the 10B acting as a source for conformal doping in the trenches, resulting in lower leakage current while also enabling neutron sensitivity in the microstructured diodes.


Asunto(s)
Doping en los Deportes , Método de Montecarlo , Neutrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA