Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3485, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108487

RESUMEN

When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

2.
Angew Chem Int Ed Engl ; 60(5): 2446-2454, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089921

RESUMEN

Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.

3.
Chem Commun (Camb) ; 54(72): 10068-10071, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30137083

RESUMEN

Surface-confined host-guest chemistry at the air/solid interface is used for trapping a functionalized 3D Zn-phthalocyanine complex into a 2D porous supramolecular template allowing the large area functionalization of an sp2-hybridized carbon-based substrate as evidenced by STM, resonance Raman spectroscopy, and water contact angle measurements.

4.
Chem Commun (Camb) ; 54(69): 9607-9610, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30094435

RESUMEN

We compare by Scanning Tunneling Microscopy (STM) self-organized honeycomb monolayers of aromatic molecules formed either on graphite or on graphene. A differential contrast between the adsorption sites observed exclusively on graphite evidences the electronic effects of the symmetry breaking by the staggered atomic layers forming this substrate.

5.
Langmuir ; 33(44): 12759-12765, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29028348

RESUMEN

We propose a novel approach to trap 2 nm Pt nanocrystals using nanoporous two-dimensional supramolecular networks for cavity-confined host-guest recognition process. This will be achieved by taking advantage of two features of supramolecular self-assembly at surfaces: First, its capability to allow the formation of complex 2D architectures, more particularly, nanoporous networks, through noncovalent interactions between organic molecular building-blocks; second, the ability of the nanopores to selectively host and immobilize a large variety of guest species. In this paper, for the first time, we will use isotropic honeycomb networks and anisotropic linear porous supramolecular networks to host 2 nm Pt nanocrystals.

6.
Nat Mater ; 16(7): 722-729, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28581481

RESUMEN

Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7-that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.

7.
Chemphyschem ; 16(18): 3774-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26488211

RESUMEN

2D supramolecular self-assembly is a good way to form well-defined nanostructures on various substrates. One of the current challenges is to extend this approach to 3D functional building blocks. Here, we address this issue by providing a strategy for the controlled lifting and positioning of functional units above a graphitic substrate. This is the first time that multistory cyclophane-based 3D tectons incorporating C60 units have been designed and synthesized. Molecular modelling provides a description of the 3D geometries and evidences the flexible character of the building blocks. Despite this later feature, the supramolecular self-assembly of Janus tectons on HOPG yields well-ordered adlayers incorporating C60 arrays at well-defined mean distances from the surface. As our approach is not limited to C60 , the results reported here open-up possibilities for applications where the topological and electronic interactions between the substrate and the functional unit are of prime importance.

8.
Beilstein J Nanotechnol ; 6: 632-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25821703

RESUMEN

Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp(2))-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.

9.
Nanotechnology ; 25(43): 435604, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25297935

RESUMEN

Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

10.
Angew Chem Int Ed Engl ; 53(38): 10060-6, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25047257

RESUMEN

A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface-confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self-assembly on flat C(sp(2))-based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid-solid interface and molecular mechanics modeling studies. The successful self-assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.

11.
Nanoscale ; 5(4): 1452-5, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23306668

RESUMEN

Taking into account substrate crystallographic constraints, an overarching molecular binding motif has been designed to allow transferable self-assembling patterns on different substrates. This optimized clip demonstrates robust and equivalent self-assembled architectures on both highly oriented pyrolitic graphite (HOPG) and reconstructed Au(111) surfaces.


Asunto(s)
Cristalización/métodos , Oro/química , Grafito/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sitios de Unión , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
Chem Commun (Camb) ; 48(26): 3209-11, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331231

RESUMEN

We measured the charge carrier mobilities for two isomers of fluorenone-based liquid crystalline organic semiconductors from their isotropic down to crystalline states through one or two mesophases. Improved charge transport properties of melt-processed crystalline films were obtained for the isomer exhibiting a highly ordered mesophase below its disordered smectic phase.


Asunto(s)
Fluorenos/química , Cristales Líquidos/química , Estructura Molecular , Semiconductores , Estereoisomerismo
13.
Langmuir ; 27(16): 10251-5, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21721572

RESUMEN

Whereas molecular electronics needs well-controlled 3D geometries for decoupling or interconnecting individual molecules, conjugated polymers form disordered structures when deposited on a substrate. We show that this trend can be overcome in polythiophene derivatives designed so as to exploit weak sulfur-bromine interactions. A self-template effect follows, leading to staggered organizations of well-aligned electronically decoupled conjugated strands, as observed in situ by scanning tunneling microscopy and spectroscopy on graphite.

15.
J Chem Phys ; 134(12): 124702, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21456690

RESUMEN

The temperature and concentration dependences of the self-assembly onto graphite from solution of a series of molecular building blocks able to form nanoporous structures are analyzed experimentally by in situ scanning tunneling microscopy. It is shown that the commonly observed coexistence of dense and nanoporous domains results from kinetic blockades rather than a thermodynamic equilibrium. The ripening can be favored by high densities of domain boundaries, which can be obtained by cooling the substrate before the nucleation and growth. Then ripening at higher-temperature yields large defect-free domains of a single structure. This thermodynamically stable structure can be either the dense or the nanoporous one, depending on the tecton concentration in the supernatant solution. A sharp phase transition from dense to honeycomb structures is observed at a critical concentration. This collective phenomenon is explained by introducing interactions between adsorbed molecules in the thermodynamic description of the whole system.

16.
J Nanosci Nanotechnol ; 10(10): 6800-4, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21137800

RESUMEN

We report here the synthesis and characterization of novel diethynylbenzene-based liquid crystalline semiconductor (P1) for organic thin-film transistors (OTFTs). Compound P1 was synthesized by the Sonogashira coupling reaction between 2-bromo-5-(4-hexylthiophen-2-yl)thieno[3,2-b]thiophene and 1,4-bis(dodecyloxy)-2,5-diethynylbenzene. Top contact OTFTs were fabricated by spin casting with 2 wt% solution of P1 in chloroform and their best performance, which exhibited a hole mobility of 4.5 x 10(-5) cm2/Vs, was showed after annealing of the films at liquid crystalline temperature. Time-of-flight (TOF) mobility measured at liquid crystalline phase was observed to be 1.5 x 10(-6) cm2/Vs for both positive and negative carriers. These results indicate that the liquid crystallinity helps to improve the molecular packing and enhance charge mobility for P1. These advantages can be applicable to design and construct solution-processable OTFT materials for electronic applications.

17.
J Nanosci Nanotechnol ; 10(10): 6874-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21137815

RESUMEN

A pH sensitive pipeprazine substituted bipyridazine fluorophore, DPP-BPDZ was explored as a pH sensor in solution and thin film state. Greenish highly fluorescent solution of the DPP-BPDZ with fluorescence quantum yield of 0.63 showed fluorescence decrease as the acetic acid concentration of the media was increased. The fluorescence quenching was correlated linearly with the content of acetic acid dose and attributed to the protonation at the terminal piperazine group. An acid sensitive film was fabricated using a transparent polymeric host (PMMA) and the DPP-BPDZ dye molecules as a guest. The resultant bright green fluorescent film (1.4 microm thick) showed exponential decrease of the fluorescence intensity as the pH of the dipping solution was decreased. In the range of pH below 4.5, the film sensitivity to pH was higher than the pH range over 4.5. A patternable film sensor was fabricated by introducing a photo acid generator (PAG) layer on the dye layer. Fluorescence patterns was formed on the film sensor through a photo-mask by relatively weak power of UV light (0.4 mW/cm2). Fluorescent line patterns having 10 microm line width were obtained with high fluorescence contrast between the patterns.


Asunto(s)
Colorantes Fluorescentes/química , Nanotecnología/métodos , Piridazinas/química , Ácido Acético , Concentración de Iones de Hidrógeno , Cloruro de Metileno , Piperazina , Piperazinas , Espectrometría de Fluorescencia
18.
Inorg Chem ; 49(9): 3991-4001, 2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20361752

RESUMEN

We report on the design and synthesis of a new quadrupolar pi-conjugated 3,3'-bipyridazine D-A-D ligand. Its electronic and optical properties were investigated. Besides high fluorescence and pronounced solvatochromism, it exhibits an inherent electroactivity exploited to build an organic green light emitting device. Moreover, the ability of this ligand to complex metallic centers (Cu(I), Ni(II), Pt(II), and Ir(III)) was also investigated to access different geometries and to tune their electronic and optical properties. These preliminary results open up the synthesis of heavy-metal complexes to obtain phosphorescent emitters.


Asunto(s)
Electrones , Fluorescencia , Óptica y Fotónica , Compuestos Organometálicos/síntesis química , Piridazinas/química , Simulación por Computador , Ligandos , Modelos Químicos , Estructura Molecular , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA