Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 53(4): 535-545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816343

RESUMEN

Organic amendments often reduce the bioaccessibility of soil lead (Pb) but not that of soil arsenic (As). The effect of Pb on As bioaccessibility is rarely studied in co-contaminated soils. In a field study, we assessed the effect of mushroom compost, leaf compost, noncomposted biosolids, and composted biosolids amendments on As speciation in a co-contaminated (As and Pb) soil at 7, 349, and 642 days after amending soils and the change of As speciation during an in vitro bioaccessibility extraction (gastric solution, pH 2.5) using bulk X-ray absorption near-edge structure spectroscopy. Soil was contaminated by coal combustion and other diffuse sources and had low As bioaccessibility (7%-12%). Unamended soil had As(III) sorbed onto pyrite (As(III)-pyrite; ∼60%) and As(V) adsorbed onto Fe oxy(hydr)oxides (As(V)-Fh; ∼40%). In amended soils, except in composted biosolids-amended soils, at 7 days, As(V)-Fh decreased to 15%-26% and redistributed into As(III)-Fh and/or As(III)-pyrite. This transformation was most pronounced in mushroom compost amended soil resulting in a significant (46%) increase of As bioaccessibility compared to the unamended soil. Composted biosolids-amended soils had relatively stable As(V)-Fh. Lead arsenate formed during the in vitro extraction in amended soils, except in composted biosolids-amended soils. Arsenic speciation and bioaccessibility were similar in 349- and 642-day in all the amended and unamended soils. Reduction of As(V)-Fh to As(III) forms in the short term in three of the amended soils showed the potential to increase As bioaccessibility. The formation of stable lead arsenate during the in vitro extraction would counteract the short-term increase of As bioaccessibility in those amended soils.


Asunto(s)
Arsénico , Plomo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Arsénico/análisis , Plomo/análisis , Plomo/química , Suelo/química , Restauración y Remediación Ambiental/métodos , Compostaje/métodos
2.
J Environ Qual ; 52(2): 380-392, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36647899

RESUMEN

Addition of manganese(IV) oxides (MnO2 ) and zeolite can affect the mobility of As and V in soils due to geochemical changes that have not been studied well in calcareous, flooded soils. This study evaluated the mobility of As and V in flooded soils surface-amended with MnO2 or zeolite. A simulated summer flooding study was conducted for 8 weeks using intact soil columns from four calcareous soils. Redox potential was measured in soils, whereas pH, major cations, and As and V concentrations were measured biweekly in pore water and floodwater. Aqueous As and V species were modeled at 0, 4, and 8 weeks after flooding (WAF) using Visual MINTEQ modeling software with input parameters of redox potential, temperature, pH, total alkalinity, and concentrations of major cations and anions. Aqueous As concentrations were below the critical thresholds (<100 µg L-1 ), whereas aqueous V concentrations exceeded the threshold for sensitive aquatic species (2-80 µg L-1 ). MnO2 -amended soils were reduced to sub-oxic levels, whereas zeolite-amended and unamended soils were reduced to anoxic levels by 8 WAF. MnO2 decreased As and V mobilities, whereas zeolite had no effect on As but increased V mobility, compared to unamended soils. Arsenic mobility increased under anoxic conditions, and V mobility increased under oxic and alkaline pH conditions. Conversion of As(V) to As(III) and V(V) to V(IV) was regulated by MnO2 in flooded soils. MnO2 can be used as an amendment in immobilizing As and V, whereas the use of zeolite in flooded calcareous soils should be done cautiously.


Asunto(s)
Arsénico , Contaminantes del Suelo , Zeolitas , Óxidos , Arsénico/análisis , Vanadio , Compuestos de Manganeso , Oxidación-Reducción , Suelo , Agua , Contaminantes del Suelo/análisis
3.
Environ Res ; 212(Pt E): 113495, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660402

RESUMEN

To prevent the COVID-19 transmission, personal protective equipment (PPE) and packaging materials have been extensively used but often managed inappropriately, generating huge amount of plastic waste. In this review, we comprehensively discussed the plastic products utilized and the types and amounts of plastic waste generated since the outbreak of COVID-19, and reviewed the potential treatments for these plastic wastes. Upcycling of plastic waste into biochar was addressed from the perspectives of both environmental protection and practical applications, which can be verified as promising materials for environmental protections and energy storages. Moreover, novel upcycling of plastic waste into biochar is beneficial to mitigate the ubiquitous plastic pollution, avoiding harmful impacts on human and ecosystem through direct and indirect micro-/nano-plastic transmission routes, and achieving the sustainable plastic waste management for value-added products, simultaneously. This suggests that the plastic waste could be treated as a valuable resource in an advanced and green manner.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Carbón Orgánico , Ecosistema , Humanos , Pandemias/prevención & control , Plásticos
4.
Environ Sci Technol ; 56(12): 8082-8093, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35634990

RESUMEN

Phosphorus (P) losses from flooded soils and subsequent transport to waterways contribute to eutrophication of surface waters. This study evaluated the effectiveness of MnO2 and a zeolite Y amendment in reducing P release from flooded soils and explored the underlying mechanisms controlling P release. Unamended and amended (MnO2 or zeolite, surface-amended at 5 Mg ha-1) soil monoliths from four clayey-alkaline soils were flooded at 22 ± 2 °C for 56 days. Soil redox potential and dissolved reactive P (DRP), pH, and concentrations of major cations and anions in porewater and floodwater were analyzed periodically. Soil P speciation was simulated using Visual MINTEQ at 1, 28, and 56 days after flooding (DAF) and P K-edge X-ray absorption near-edge structure spectroscopy and sequential fractionation at 56 DAF. Porewater DRP increased with DAF and correlated negatively with pe+pH and positively with dissolved Fe. Reductive dissolution of Fe-associated P was the dominant mechanism of flooding-induced P release. The MnO2 amendment reduced porewater DRP by 30%-50% by favoring calcium phosphates (Ca-P) precipitation and delaying the reductive dissolution reactions. In three soils, the zeolite amendment at some DAF increased porewater and/or floodwater DRP through dissolution of Ca-P and thus was not effective in reducing P release from flooded soils.


Asunto(s)
Contaminantes del Suelo , Zeolitas , Iones , Manganeso , Compuestos de Manganeso , Óxidos , Fósforo/química , Suelo/química , Contaminantes del Suelo/química
5.
J Environ Qual ; 51(1): 90-100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34964984

RESUMEN

Anaerobic conditions developed during flooding can increase phosphorus (P) losses from soils to waterways. Soil amendment with gypsum (CaSO4 ·2H2 O) can effectively reduce flooding-induced P release, but its effectiveness is soil dependent, and the reasons are poorly understood. The objectives of this study were to reveal the possible inorganic P transformations during flooding of two soils (acidic-Neuenberg sandy loam [NBG-SL] and alkaline-Fyala clay [FYL-Cl]), with and without gypsum amendment prior to flooding. Porewater samples collected at 0, 35, and 70 d after flooding (DAF) from soils incubated in vessels were analyzed for dissolved reactive P (DRP); pH; and concentrations of calcium (Ca), magnesium, iron (Fe), manganese, chloride, nitrate, sulfate, and fluoride. Thermodynamic modeling using Visual MINTEQ software and chemical fractionation of soil P were used to infer P transformations. Soil redox potential (Eh) decreased with flooding and favored reductive dissolution of Fe-associated P increasing porewater DRP concentrations. Greater solubility of Ca-P under acidic pH maintained a higher DRP concentration in NBG-SL during early stages of flooding. A subsequent increase in pH with flooding and higher Ca concentration with added gypsum enhanced the stability of Ca-P (ß-tricalcium phosphate and octacalcium phosphate), reducing the DRP concentration in gypsum-amended NBG-SL. Stability of Ca-P was less affected with flooding and gypsum amendment in FYL-Cl soil because it had an alkaline pH and inherently higher Ca concentration. The FYL-Cl, with a more rapid decrease in Eh than NBG-SL, became severely reduced, releasing more P and Fe by 70 DAF. These conditions favored vivianite formation in FYL-Cl but not in NBG-SL.


Asunto(s)
Sulfato de Calcio , Suelo , Arcilla , Inundaciones , Fósforo
6.
Sci Rep ; 8(1): 16810, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429492

RESUMEN

Direct evidence-based approaches are vital to evaluating newly proposed theories on the persistence of soil organic carbon and establishing the contributions of abiotic and biotic controls. Our primary goal was to directly identify the mechanisms of organic carbon stabilization in native-state, free soil microaggregates without disrupting the aggregate microstructure using scanning transmission x-ray microscopy coupled with near edge x-ray absorption fine structure spectroscopy (STXM-NEXAFS). The influence of soil management practices on microaggregate associated-carbon was also assessed. Free, stable soil microaggregates were collected from a tropical agro-ecosystem in Cruz Alta, Brazil. The long-term experimental plots (>25 years) comparing two tillage systems: no-till and till with a complex crop rotation. Based on simultaneously collected multi-elemental associations and speciation, STXM-NEXAFS successfully provided submicron level information on organo-mineral associations. Simple organic carbon sources were found preserved within microaggregates; some still possessing original morphology, suggesting that their stabilization was not entirely governed by the substrate chemistry. Bulk analysis showed higher and younger organic carbon in microaggregates from no-till systems than tilled systems. These results provide direct submicron level evidence that the surrounding environment is involved in stabilizing organic carbon, thus favoring newly proposed concepts on the persistence of soil organic carbon.

7.
J Environ Qual ; 46(6): 1215-1224, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29293834

RESUMEN

In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment and aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.


Asunto(s)
Compostaje , Plomo/química , Contaminantes del Suelo/química , Disponibilidad Biológica , Jardines , Suelo
8.
J Environ Qual ; 44(3): 930-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26024273

RESUMEN

Urban soils may contain harmful concentrations of contaminants, such as lead (Pb), arsenic (As), and polycyclic aromatic hydrocarbons (PAHs), that can transfer from soil to humans via soil ingestion and consumption of food crops grown in such soils. The objective of this research was to assess the effectiveness of adding different compost types to reduce both direct (soil-human) and indirect (soil-plant-human) exposure of Pb, As, and PAHs to humans. A field experiment was conducted in 2011 and 2012 at an urban garden site with elevated concentrations of Pb (475 mg kg), As (95 mg kg), and PAHs (23-50 mg kg). Soil amendments were composted biosolids, noncomposted biosolids, mushroom compost, leaf compost, and a nonamended control. Collard greens, tomatoes, and carrots were then grown in the amended and nonamended soils and nonamended soils that received urea in 2011. At the beginning of the second season, N-P-K fertilizer was added to all plots. The potential for direct and indirect exposure was evaluated. Soil Pb bioaccessibility was 1 to 4.3%, and As bioaccessibility was 7.3 to 12.3%. Composted biosolids reduced the bioaccessibility of soil Pb by ∼17% compared with the control but temporarily increased the bioaccessibility of As by ∼ 69% compared with the control when soluble inorganic P concentration in soil was elevated by P fertilizer application in 2012. The bioaccessibility of soil Pb decreased by ∼38% in all treatments when soluble inorganic P concentration in soil was elevated by P fertilizer. Compost amendments reduced the concentrations of low molecular weight PAHs in soil. Regardless of the treatments, the concentrations of Pb, As, and PAHs measured in the vegetables were low or nondetectable, except for Pb in carrots. Consumption of vegetables grown at this site will cause insignificant transfer of Pb, As, and PAHs to humans.

9.
J Environ Qual ; 43(2): 475-87, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25602649

RESUMEN

Lead (Pb) is one of the most common contaminants in urban soils. Gardening in contaminated soils can result in Pb transfer from soil to humans through vegetable consumption and unintentional direct soil ingestion. A field experiment was conducted in 2009 and 2010 in a community urban garden with a soil total Pb concentration of 60 to 300 mg kg. The objectives of this study were to evaluate soil-plant transfer of Pb, the effects of incorporation of a leaf compost as a means of reducing Pb concentrations in vegetables and the bioaccessibility of soil Pb, and the effects of vegetable cleaning techniques on the Pb concentrations in the edible portions of vegetables. The amount of compost added was 28 kg m. The tested plants were Swiss chard, tomato, sweet potato, and carrots. The vegetable cleaning techniques were kitchen cleaning, laboratory cleaning, and peeling. Compost addition diluted soil total Pb concentration by 29 to 52%. Lead concentrations of the edible portions of vegetables, except carrot, were below the maximum allowable limits of Pb established by the Food and Agriculture Organization and the World Health Organization. Swiss chard and tomatoes subjected to kitchen cleaning had higher Pb concentrations than laboratory-cleaned plants. Cleaning methods did not affect Pb concentrations in carrots. Bioaccessible Pb in the compost-added soils was 20 to 30% less than that of the no-compost soils; compost addition reduced the potential of transferring soil Pb to humans via vegetable consumption and direct soil ingestion. Thorough cleaning of vegetables further reduced the potential of transferring soil Pb to humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA