Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
NPJ Biodivers ; 3(1): 28, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289538

RESUMEN

A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.

3.
Nat Genet ; 56(6): 1080-1089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684900

RESUMEN

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.


Asunto(s)
Autofagia , Proteínas de Homeodominio , Linaje , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Autofagia/genética , Expansión de Repetición de Trinucleótido/genética , Proteínas de Homeodominio/genética , Ataxias Espinocerebelosas/genética , Masculino , Femenino , Células Madre Pluripotentes Inducidas/metabolismo
4.
Mov Disord ; 39(4): 715-722, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38357851

RESUMEN

INTRODUCTION: Pathogenic variants in parkin (PRKN gene) are the second most prevalent known monogenic cause of Parkinson's disease (PD). How monoallelic or biallelic pathogenic variants in the PRKN gene may affect its transcription in patient-derived biological material has not been systematically studied. METHODS: PRKN mRNA expression levels were measured with real-time polymerase chain reaction (RT-PCR) in peripheral blood mononuclear cells (PBMCs). PBMCs were derived from PRKN-mutated PD patients (PRKN-PD) (n = 12), sporadic PD (sPD) (n = 21) and healthy controls (n = 21). Six of the PRKN-PD patients were heterozygous, four were compound heterozygous, and two were homozygous for PRKN variants. RESULTS: A statistically significant decrease in PRKN expression levels was present, compared to healthy controls and sPD, in heterozygous (P = 0.019 and 0.031 respectively) and biallelic (P < 0.001 for both) PRKN-PD. PRKN expression levels in biallelic PD patients were uniformly very low and were reduced, albeit not significantly, compared to heterozygotes. Based on receiver operating characteristic analysis, low PRKN expression levels were a sensitive and extremely specific indicator for the presence of PRKN pathogenic variants. CONCLUSIONS: Assessment of PRKN mRNA levels in PBMCs may be a useful way to screen for biallelic pathogenic variants in the PRKN gene. Suspicion for certain variants in a heterozygous state may also be raised based on low PRKN mRNA levels. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Leucocitos Mononucleares , Enfermedad de Parkinson , ARN Mensajero , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Femenino , ARN Mensajero/metabolismo , Persona de Mediana Edad , Anciano , Adulto , Mutación
6.
NPJ Parkinsons Dis ; 9(1): 156, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996455

RESUMEN

Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.

7.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834164

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset of patients clinically diagnosed with DMD, the molecular cause is not identified with these routine methods. Evaluation of the 60 DMD patients in our center revealed three cases without a known genetic cause. DNA samples of these patients were analyzed using whole-exome sequencing (WES) and, if unconclusive, optical genome mapping (OGM). WES led to a diagnosis in two cases: one patient was found to carry a splice mutation in the DMD gene that had not been identified during previous Sanger sequencing. In the second patient, we detected two variants in the fukutin gene (FKTN) that were presumed to be disease-causing. In the third patient, WES was unremarkable, but OGM identified an inversion disrupting the DMD gene (~1.28 Mb) that was subsequently confirmed with long-read sequencing. These results highlight the importance of reanalyzing unsolved cases using WES and demonstrate that OGM is a useful method for identifying large structural variants in cases with unremarkable exome sequencing.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Masculino , Inversión Cromosómica , Mapeo Cromosómico , Distrofina/genética , Secuenciación del Exoma , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutación
8.
Proc Natl Acad Sci U S A ; 119(27): e2115538119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759666

RESUMEN

Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.


Asunto(s)
Defectos de la Visión Cromática , Opsinas de Bastones , Defectos de la Visión Cromática/genética , Eliminación de Gen , Humanos , Familia de Multigenes/genética , Células Fotorreceptoras Retinianas Conos , Opsinas de Bastones/genética
10.
Clin Nutr ; 41(12): 2934-2939, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34893357

RESUMEN

BACKGROUND & AIMS: COVID-19 patients present a high hospitalization rate with a high mortality risk for those requiring intensive care. When these patients have other comorbid conditions and older age, the risk for severe disease and poor outcomes after ICU admission are increased. The present work aims to describe the preliminary results of the ongoing NUTRICOVID study about the nutritional and functional status and the quality of life of adult COVID-19 survivors after ICU discharge, emphasizing the in-hospital and discharge situation of this population. METHODS: A multicenter, ambispective, observational cohort study was conducted in 16 public hospitals of the Community of Madrid with COVID-19 survivors who were admitted to the ICU during the first outbreak. Preliminary results of this study include data retrospectively collected. Malnutrition and sarcopenia were screened at discharge using MUST and SARC-F; the use of healthcare resources was measured as the length of hospital stay and requirement of respiratory support and tracheostomy during hospitalization; other study variables were the need for medical nutrition therapy (MNT); and patients' functional status (Barthel index) and health-related quality of life (EQ-5D-5L). RESULTS: A total of 176 patients were included in this preliminary analysis. Most patients were male and older than 60 years, who suffered an average (SD) weight loss of 16.6% (8.3%) during the hospital stay, with a median length of stay of 53 (27-89.5) days and a median ICU stay of 24.5 (11-43.5) days. At discharge, 83.5% and 86.9% of the patients were at risk of malnutrition and sarcopenia, respectively, but only 38% were prescribed MNT. In addition, more than 70% of patients had significant impairment of their mobility and to conduct their usual activities at hospital discharge. CONCLUSIONS: This preliminary analysis evidences the high nutritional and functional impairment of COVID-19 survivors at hospital discharge and highlights the need for guidelines and systematic protocols, together with appropriate rehabilitation programs, to optimize the nutritional management of these patients after discharge.


Asunto(s)
COVID-19 , Desnutrición , Sarcopenia , Adulto , Humanos , Masculino , Femenino , Calidad de Vida , COVID-19/epidemiología , Sarcopenia/epidemiología , Estado Funcional , Estudios Retrospectivos , Unidades de Cuidados Intensivos , Hospitalización , Sobrevivientes , Desnutrición/epidemiología , Brotes de Enfermedades , Estado Nutricional
12.
Prog Retin Eye Res ; 80: 100874, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553897

RESUMEN

Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.


Asunto(s)
Mutación/genética , Empalme del ARN/genética , Enfermedades de la Retina/genética , Biología Computacional , Exones , Humanos , Intrones , Sitios de Empalme de ARN/genética
13.
Nat Biotechnol ; 39(4): 422-430, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33318652

RESUMEN

Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only long, error-prone reads, and most human genomes assembled from long reads add accurate short reads to polish the consensus sequence. Here we report an algorithm for hybrid assembly, WENGAN, that provides very high quality at low computational cost. We demonstrate de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethION, PacBio Sequel, Illumina and MGI technology. WENGAN implements efficient algorithms to improve assembly contiguity as well as consensus quality. The resulting genome assemblies have high contiguity (contig NG50: 17.24-80.64 Mb), few assembly errors (contig NGA50: 11.8-59.59 Mb), good consensus quality (QV: 27.84-42.88) and high gene completeness (BUSCO complete: 94.6-95.2%), while consuming low computational resources (CPU hours: 187-1,200). In particular, the WENGAN assembly of the haploid CHM13 sample achieved a contig NG50 of 80.64 Mb (NGA50: 59.59 Mb), which surpasses the contiguity of the current human reference genome (GRCh38 contig NG50: 57.88 Mb).


Asunto(s)
Biología Computacional/métodos , Mapeo Contig/métodos , Genoma Humano , Algoritmos , Haploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
14.
Methods Mol Biol ; 2047: 59-80, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31552649

RESUMEN

The study of acoel morphologies has been recently stimulated by the knowledge that this group of animals represents an early offshoot of the Bilateria. Understanding how organ systems and tissues develop and the molecular underpinnings of the processes involved has become an area of new research. The microscopic anatomy of these organisms is best understood through the systematic use of immunochemistry and in situ hybridization procedures. These methods allow us to map, in precise detail, the expression patterns of genes and proteins, in space and time. With the additional use of genomic resources, they provide us with insights on how a group of "early" bilaterians have diversified over time. As these animals are new to the world of molecular studies, the protocols have involved a lot of new and specific adaptations to their specific anatomical-histological characteristics. Here we explain some of these protocols in detail, with the aim that should prove useful in our much-needed understanding of the origins of bilaterian animals. An anatomical sketch is provided at the beginning as a necessary guide for those not familiar with the Acoela.


Asunto(s)
Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Turbelarios/citología , Turbelarios/metabolismo , Animales , Inmunoquímica , Hibridación in Situ , Organogénesis/genética , Organogénesis/fisiología , Filogenia
15.
BMC Med Genet ; 19(1): 107, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940872

RESUMEN

BACKGROUND: Blue Cone Monochromacy (BCM) is a rare congenital cone dysfunction disorder with X-linked recessive mode of inheritance. BCM is caused by mutations at the OPN1LW/MW cone opsin gene cluster including deletions of the locus control region (LCR) and/or parts of the gene cluster. We aimed at investigating the clinical presentation, genetic cause and inheritance underlying a sporadic case of BCM. CASE PRESENTATION: We report a 24-year-old male presenting with congenital photophobia, nystagmus and colour vision abnormalities. There was no history of retinal dystrophy in the family. Clinical diagnosis of BCM was supported by genetic investigations of the patient and his family members. Molecular genetic analysis of the OPN1LW/OPN1MW gene cluster revealed a novel deletion of about 73 kb in the patient encompassing the LCR. The deletion was absent in the X-chromosomes of both the mother and transmitting grandfather. CONCLUSIONS: The present report provides the clinical findings and the genetic basis underlying a sporadic BCM case which is caused by a de novo deletion within the OPN1LW/MW gene cluster originating from the mother's germline due to Alu-repeat mediated recombination. This is the first report of a de novo deletion resulting in BCM, highlighting the importance to consider BCM and perform genetic testing for this condition in male patients with cone dysfunction also in the absence of a positive family history.


Asunto(s)
Defectos de la Visión Cromática/genética , Familia de Multigenes/genética , Opsinas de Bastones/genética , Eliminación de Secuencia/genética , Adulto , Cromosomas Humanos X/genética , Humanos , Masculino , Linaje , Adulto Joven
16.
Med. oral patol. oral cir. bucal (Internet) ; 23(3): e335-e343, mayo 2018. tab, graf
Artículo en Inglés | IBECS | ID: ibc-175886

RESUMEN

BACKGROUND: The present study was carried out to evaluate the possible association between obesity and periodontitis in patients with DS, and to explore which measure of obesity is most closely correlated to periodontitis. MATERIAL AND METHODS: A prospective observational study was made to determine whether obesity is related to periodontal disease in patients with DS. The anthropometric variables were body height and weight, which were used to calculate BMI and stratify the patients into three categories: < 25(normal weight), 25-29.9 (overweight) and ≥ 30.0 kg/m2 (obese). Waist circumference and hip circumference in turn was recorded as the greatest circumference at the level of the buttocks, while the waist/hip ratio (WHR) was calculated. Periodontal evaluation was made of all teeth recording the plaque index (PI), pocket depth (PD), clinical attachment level (CAL) and the gingival index. We generated a multivariate linear regression model to examine the relationship between PD and the frequency of tooth brushing, gender, BMI, WHI, WHR, age and PI. RESULTS: Significant positive correlations were observed among the anthropometric parameters BMI, WHR, WHI and among the periodontal parameters PI, PD, CAL and GI. The only positive correlation between the anthropometric and periodontal parameters corresponded to WHR. Upon closer examination, the distribution of WHR was seen to differ according to gender. Among the women, the correlation between WHR and the periodontal variables decreased to nonsignificant levels. In contrast, among the males the correlation remained significant and even increased. In a multivariate linear regression model, the coefficients relating PD to PI, WHR and age were positive and significant in all cases. CONCLUSIONS: Our results suggest that there may indeed be an association between obesity and periodontitis in male patients with DS. Also, we found a clear correlation with WHR, which was considered to be the ideal adiposity indicator in this context


Asunto(s)
Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Síndrome de Down/complicaciones , Obesidad/complicaciones , Periodontitis/etiología , Estudios Prospectivos
17.
Sci Rep ; 6: 28253, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27339364

RESUMEN

X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. 'LIAVA', 'LVAVA') with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the 'LIAVA' haplotype derived from an ancestral less deleterious 'LIAVS' haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree.


Asunto(s)
Defectos de la Visión Cromática/genética , Conversión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación de Línea Germinal , Opsinas de Bastones/genética , Defectos de la Visión Cromática/diagnóstico por imagen , Defectos de la Visión Cromática/fisiopatología , Electrorretinografía , Exones , Femenino , Genes Ligados a X , Haplotipos , Humanos , Masculino , Familia de Multigenes , Linaje , Polimorfismo de Nucleótido Simple
18.
Philos Trans R Soc Lond B Biol Sci ; 371(1685): 20150039, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26598722

RESUMEN

Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains).


Asunto(s)
Evolución Biológica , Sistema Nervioso Central/anatomía & histología , Invertebrados/anatomía & histología , Animales
19.
Hum Mol Genet ; 24(19): 5486-99, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26188004

RESUMEN

Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Mutación Puntual , Retina/fisiopatología , Retinitis Pigmentosa/patología , Animales , Calpaína/metabolismo , Caspasas/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Retina/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología
20.
J Exp Biol ; 218(Pt 4): 618-28, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25696825

RESUMEN

Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper.


Asunto(s)
Genoma , Invertebrados/clasificación , Sistema Nervioso/anatomía & histología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Invertebrados/anatomía & histología , Invertebrados/genética , Datos de Secuencia Molecular , Filogenia , Platelmintos/anatomía & histología , Platelmintos/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA