RESUMEN
The highly pathogenic Avian Influenza virus (HPAIV) H5N1 has caused a global outbreak affecting both wild and domestic animals, predominantly avian species. To date, cases of the HPAIV H5 Clade 2.3.4.4b in penguins have exclusively been reported in African Penguins. In Chile, the virus was confirmed in pelicans in December 2022 and subsequently spread across the country, affecting several species, including Humboldt penguins. This study aims to provide an overview of the incidents involving stranded and deceased Humboldt penguins and establish a connection between these events and HPAIV H5N1. Historical data about strandings between 2009 and 2023 was collected, and samples from suspected cases in 2023 were obtained to confirm the presence of HPAIV H5N1. Between January and August 2023, 2,788 cases of stranded and deceased penguins were recorded. Out of these, a total of 2,712 penguins deceased, evidencing a significative increase in mortality starting in early 2023 coinciding with the introduction and spreading of HPAIV H5N1 in the country. Thirty-seven events were categorized as mass mortality events, with the number of deceased penguins varying from 11 to 98. Most cases (97â¯%) were observed in the North of Chile. One hundred and eighty-one specimens were subjected to HPAIV diagnosis, four of which tested positive for HPAIV H5N1. Spatial analysis validates the correlation between mass mortality events and outbreaks of HPAIV in Chile. However, the limited rate of HPAIV H5N1 detection, which can be attributed to the type and quality of the samples, requiring further exploration.
Asunto(s)
Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Spheniscidae , Animales , Spheniscidae/virología , Chile/epidemiología , Brotes de Enfermedades/veterinaria , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Aviar/mortalidadRESUMEN
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Asunto(s)
Acidithiobacillus/virología , Bacteriófagos/fisiología , Provirus/fisiología , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Provirus/genética , Provirus/aislamiento & purificación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Integración ViralRESUMEN
The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic characteristics of these subgroups of strains are as yet unresolved, correlations to specific metadata hint to the mechanisms behind econiche-driven divergence of some of the species/phylotypes identified. The emerging phylogenetic structure for the genus outlined in this study can be used to guide isolate selection for future population genomics and evolutionary studies in this important acidophile model.