Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175503

RESUMEN

Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1ß in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased ß-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic ß-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic ß-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain.


Asunto(s)
Analgesia , Neuralgia , Ratas , Animales , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , betaendorfina/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Nervio Ciático/metabolismo , Ganglios Espinales/metabolismo
2.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064617

RESUMEN

Persistent pain is a prevalent symptom of Parkinson's disease (PD), which is related to the loss of monoamines and neuroinflammation. Motor cortex stimulation (MCS) inhibits persistent pain by activating the descending analgesic pathways; however, its effectiveness in the control of PD-induced pain remains unclear. Here, we evaluated the analgesic efficacy of MCS together with serotonergic and spinal glial modulation in an experimental PD (ePD) rat model. Wistar rats with unilateral striatal 6-OHDA and MCS were assessed for behavioral immobility and nociceptive responses. The immunoreactivity of dopamine in the substantia nigra and serotonin in the nucleus raphe magnus (NRM) and the neuronal, astrocytic, and microglial activation in the dorsal horn of the spinal cord were evaluated. MCS, without interfering with dopamine loss, reversed ePD-induced immobility and hypernociception. This response was accompanied by an exacerbated increase in serotonin in the NRM and a decrease in neuronal and astrocytic hyperactivation in the spinal cord, without inhibiting ePD-induced microglial hypertrophy and hyperplasia. Taken together, MCS induces analgesia in the ePD model, while restores the descending serotonergic pathway with consequent inhibition of spinal neurons and astrocytes, showing the role of MCS in PD-induced pain control.


Asunto(s)
Astrocitos/metabolismo , Corteza Motora/fisiología , Nocicepción , Enfermedad de Parkinson/metabolismo , Núcleos del Rafe/metabolismo , Serotonina/metabolismo , Aminas/metabolismo , Analgesia , Animales , Conducta Animal , Modelos Animales de Enfermedad , Dopamina/metabolismo , Electrodos , Inflamación , Masculino , Corteza Motora/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Dolor/complicaciones , Manejo del Dolor , Ratas , Ratas Wistar , Médula Espinal/metabolismo
3.
J Neurosurg, v. 132, p. 239-251, jan. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2909

RESUMEN

OBJECTIVE Motor cortex stimulation (MCS) is a neurosurgical technique used to treat patients with refractory neuropathic pain syndromes. MCS activates the periaqueductal gray (PAG) matter, which is one of the major centers of the descending pain inhibitory system. However, the neurochemical mechanisms in the PAG that underlie the analgesic effect of MCS have not yet been described. The main goal of this study was to investigate the neurochemical mechanisms involved in the analgesic effect induced by MCS in neuropathic pain. Specifically, we investigated the release of g-aminobutyric acid (GABA), glycine, and glutamate in the PAG and performed pharmacological antagonism experiments to validate of our findings. METHODS Male Wistar rats with surgically induced chronic constriction of the sciatic nerve, along with sham-operated rats and naive rats, were implanted with both unilateral transdural electrodes in the motor cortex and a microdialysis guide cannula in the PAG and subjected to MCS. The MCS was delivered in single 15-minute sessions. Neurotransmitter release was evaluated in the PAG before, during, and after MCS. Quantification of the neurotransmitters GABA, glycine, and glutamate was performed using a high-performance liquid chromatography system. The mechanical nociceptive threshold was evaluated initially, on the 14th day following the surgery, and during the MCS. In another group of neuropathic rats, once the analgesic effect after MCS was confirmed by the mechanical nociceptive test, rats were microinjected with saline or a glycine antagonist (strychnine), a GABA antagonist (bicuculline), or a combination of glycine and GABA antagonists (strychnine+bicuculline) and reevaluated for the mechanical nociceptive threshold during MCS. RESULTS MCS reversed the hyperalgesia induced by peripheral neuropathy in the rats with chronic sciatic nerve constriction and induced a significant increase in the glycine and GABA levels in the PAG in comparison with the naive and sham-treated rats. The glutamate levels remained stable under all conditions. The antagonism of glycine, GABA, and the combination of glycine and GABA reversed the MCS-induced analgesia. CONCLUSIONS These results suggest that the neurotransmitters glycine and GABA released in the PAG may be involved in the analgesia induced by cortical stimulation in animals with neuropathic pain. Further investigation of the mechanisms involved in MCS-induced analgesia may contribute to clinical improvements for the treatment of persistent neuropathic pain syndromes

4.
Sci Rep ; 8(1): 13608, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206257

RESUMEN

The amygdala is an important component of the limbic system that participates in the control of the pain response and modulates the affective-motivational aspect of pain. Neuropathic pain is a serious public health problem and has a strong affective-motivational component that makes it difficult to treat. The central (CeA), basolateral (BLA) and lateral (LA) nuclei of the amygdala are involved in the processing and regulation of chronic pain. However, the roles of these nuclei in the maintenance of neuropathic pain, anxiety and depression remain unclear. Thus, the main objective of this study was to investigate the role of amygdala subnuclei in the modulation of neuropathic pain, including the affective-motivational axis, in an experimental model of peripheral neuropathy. The specific goals were as follows: (1) To evaluate the nociceptive responses and the patterns of activation of the CeA, BLA and LA in neuropathic rats; and (2) To evaluate the effect of inactivating the amygdala nuclei on the nociceptive response, anxiety and depressive behaviors, motor activity, and plasma stress hormones in animals with neuropathic pain. Thus, mechanical hyperalgesia and allodynia, and the pattern of c-Fos staining in the amygdala subnuclei were evaluated in rats with chronic constriction of the sciatic nerve, as well as sham-operated and naïve rats. Once the amygdala subnuclei involved in neuropathic pain response were defined, those subnuclei were pharmacological inactivated. The effect of muscimol inactivation on the nociceptive response (hyperalgesia and allodynia), anxiety (elevated plus-maze), depressive-like behavior (forced swim test), motor activity (open field), and plasma stress hormone levels (corticosterone and adrenocorticotropic hormone) were evaluated in sham-operated and neuropathic animals. The results showed that the anterior and posterior portions of the BLA and the central portion of the CeA are involved in controlling neuropathic pain. The inactivation of these nuclei reversed hyperalgesia, allodynia and depressive-like behavior in animals with peripheral neuropathy. Taken together, our findings improve our understanding of the neurocircuitry involved in persistent pain and the roles of specific amygdala subnuclei in the modulation of neuropathic pain, including the neurocircuitry that processes the affective-motivational component of pain.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Dolor Nociceptivo/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Hormona Adrenocorticotrópica/sangre , Animales , Ansiedad/sangre , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/fisiopatología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/fisiopatología , Dolor Crónico/fisiopatología , Corticosterona/sangre , Depresión/sangre , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Humanos , Hiperalgesia/sangre , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Muscimol/administración & dosificación , Neuralgia/sangre , Neuralgia/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Dolor Nociceptivo/sangre , Dolor Nociceptivo/fisiopatología , Dimensión del Dolor , Umbral del Dolor , Enfermedades del Sistema Nervioso Periférico/sangre , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiopatología
5.
Eur J Pain ; 15(3): 268.e1-14, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20817578

RESUMEN

Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain.


Asunto(s)
Terapia por Estimulación Eléctrica , Hiperalgesia/terapia , Corteza Motora/fisiopatología , Neuralgia/terapia , Neuronas/fisiología , Nervio Ciático/lesiones , Animales , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Corteza Motora/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatología , Umbral del Dolor/fisiología , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/fisiopatología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA