Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Diabetes Complications ; 35(10): 108001, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391637

RESUMEN

Mesenchymal stem cells (MSCs) are a potential source of angiogenic factors which may promote wound healing in poorly vascularized diabetic foot ulcers. We demonstrate that MSCs of patients with diabetic foot ulcers seeded on decellularized micro-fragments transcribe and secrete angiogenic factors in amounts comparable to MSCs derived from healthy individuals.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Diabetes Mellitus , Pie Diabético , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Pie Diabético/terapia , Humanos , Células Madre Mesenquimatosas/citología , Cicatrización de Heridas
2.
Cancers (Basel) ; 13(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198488

RESUMEN

We present a three-dimensional model based on acellular scaffolds to recreate bladder carcinoma in vitro that closely describes the in vivo behavior of carcinoma cells. The integrity of the basement membrane and protein composition of the bladder scaffolds were examined by Laminin immunostaining and LC-MS/MS. Human primary bladder carcinoma cells were then grown on standard monolayer cultures and also seeded on the bladder scaffolds. Apparently, carcinoma cells adhered to the scaffold basement membrane and created a contiguous one-layer epithelium (engineered micro-carcinomas (EMCs)). Surprisingly, the gene expression pattern displayed by EMCs was similar to the profile expressed by the carcinoma cells cultured on plastic. However, the pattern of secreted growth factors was significantly different, as VEGF, FGF, and PIGF were secreted at higher levels by EMCs. We found that only the combination of factors secreted by EMCs, but not the carcinoma cells grown on plastic dishes, was able to induce either the pro-inflammatory phenotype or the myofibroblast phenotype depending on the concentration of the secreted factors. We found that the pro-inflammatory phenotype could be reversed. We propose a unique platform that allows one to decipher the paracrine signaling of bladder carcinoma and how this molecular signaling can switch the phenotypes of fibroblasts.

3.
J Biosci Bioeng ; 132(4): 408-416, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34326013

RESUMEN

Conventional treatments of peripheral vascular disease and coronary artery disease have partial success but are still limited. Methods to deliver angiogenic factors into ischemic areas using gene, protein and cell therapies are faced with difficult issues such a delivery, effective concentration and duration of action. Tissue engineering offers the possibility of creating a functional self-contained three-dimensional (3D) unit that works as a coordinated biological pump that can secrete a whole range of angiogenic factors. We report a tissue engineering approach using decellularized micro-fragments and mesenchymal stem cells (MSCs) to create a vascular inducing device (VID). Proteomic analysis of the decellularized micro-fragments and of the VIDs reveals a large number of extracellular-matrix (ECM) proteins. Moreover, the VIDs were found to transcribe and secrete a whole repertoire of angiogenic factors in a sustained manner. Furthermore, preliminary results of implantation VIDs into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice indicate formation of vascular network at the site within a week. We propose that those VIDs could serve as a safe, localized, simple and powerful method for the treatment of certain types of vascular diseases.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Fisiológica , Proteómica
4.
Front Oncol ; 9: 410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192122

RESUMEN

We here present a novel micro-system which allows to reconstitute an in vivo lung carcinoma where the various constituting epithelial and/or stromal structural and/or cellular components can be incorporated at will. In contrast to various "organs on a chip" the model is based on the observation that in nature, epithelial cells are always supported by a connective tissue or stroma. The model is based on acellular micro-scaffolds of microscopic dimensions which enable seeded cells to obtain gases and nutrients through diffusion thus avoiding the need for vascularization. As a proof of concept, we show that in this model, Calu-3 cells can form a well-organized, continuous, polarized, one-layer epithelium lining the stromal derived alveolar cavities, and express a different pattern of tumor-related genes than when grown as standard monolayer cultures on plastic culture dishes. To our knowledge, this model, introduces for the first time a system where the function of carcinogenic cells can be tested in vitro in an environment that closely mimics the natural in vivo situation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA