Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36489, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253143

RESUMEN

The accurate evaluation of the effective mechanical properties of composites mainly depends on the characteristics of representative volume elements (RVEs). This paper mainly investigates the RVE size. Additionally, the effect of volume fraction of reinforcement, the edge effect, and RVE types on the critical size are discussed. First, the Al/Ni multilayered composites were processed by nine cycles of the cross-accumulative roll bonding (CARB) method. Then, one type of RVEs was created based on cross-sectional micrographs of composites to consider their inhomogeneities. Another type was generated by using the random sequential adsorption (RSA) procedure. Thereafter, the homogenized effective elastic properties of both types of microstructure-based RVEs and RSA-based RVEs were computed and compared as a function of the volume fraction of Ni and RVE size. The results showed that by increasing the Ni fragments, the RVEs indicated stiffer elastic behavior. By increasing the volume fraction of Ni from 0.2 Vf to 0.8 Vf, the Poisson ratio decreased by 7 % and the elastic modulus increased by 83 % for RSA-based RVE. Regarding the size of microstructure-based RVE of Al/Ni (0.8 Vf), from the largest size (size 1) with a length of 575 µm and a width of 575 µm to the smallest size (size 5) with a length of 287.5 µm and a width of 287.5 µm, the elastic modulus and the Poisson ratio showed 16 % and 0.8 % decrease, respectively.

2.
Materials (Basel) ; 15(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431683

RESUMEN

This paper deals with the effects of three low-carbon steel filler metals consisting of ferritic and austenitic phases on the weld joints of the tungsten inert gas (TIG) welding of Hardox 500 steel. The correlation between the microstructure and mechanical properties of the weld joints was investigated. For this purpose, macro and microstructure were examined, and then microhardness, tensile, impact, and fracture toughness tests were carried out to analyze the mechanical properties of joints. The results of optical microscopy (OM) images showed that the weld zones (WZ) of all three welds were composed of different ferritic morphologies, including allotriomorphic ferrite, Widmanstätten ferrite, and acicular ferrite, whereas the morphology of the heat-affected zone (HAZ) showed the various microstructures containing mostly ferrite and pearlite phases. Further, based on mechanical tests, the second filler with ferritic microstructure represented better elongation, yield strength, ultimate tensile strength, impact toughness, and fracture toughness due to having a higher amount of acicular ferrite phase compared to the weld joints concerning the other fillers consisting of austenitic and ferritic-austenitic. However, scanning electron microscopy (SEM) images on the fracture surfaces of the tensile test showed a ductile-type fracture with a large number of deep and shallow voids while on the fracture surfaces resulting from the Charpy impact tests and both ductile and cleavage modes of fracture took place, indicating the initiation and propagation of cracks, respectively. The presence of acicular ferrite as a soft phase that impedes the dislocation pile-up brings about the ductile mode of fracture while inclusions may cause stress concentration, thus producing cleavage surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA