Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nanosci Au ; 4(4): 235-242, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39184832

RESUMEN

Although chemical promotion led to essential improvements in Cu-based catalysts for CO2 hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In2O3/CeO2 and Cu/In2O3/ZrO2 catalysts by coating the nanoparticles with a mesoporous SiO2 shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal-metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.

2.
Top Catal ; 66(19-20): 1539-1552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37830054

RESUMEN

Syngas can be produced from biomethane via Partial Oxidation of Methane (POM), being an attractive route since it is ecofriendly and sustainable. In this work, catalysts of Ni supported on MgO-ZrO2 solid solutions, prepared by a one-step polymerization method, were characterized by HRTEM/EDX, XRD, XPS, H2-TPR, and in situ XRD. All catalysts, including Ni/ZrO2 and Ni/MgO as reference, were tested for POM (CH4:O2 molar ratio 2, 750 ºC, 1 atm). NiO/MgO/ZrO2 contained two solid-solutions, MgO-ZrO2 and NiO-MgO, as revealed by XRD and XPS. Ni (30 wt%) supported on MgO-ZrO2 solid solution exhibited high methane conversion and hydrogen selectivity. However, depending on the MgO amount (0, 4, 20, 40, 100 molar percent) major differences in NiO reducibility, growth of Ni0 crystallite size during H2 reduction and POM, and in carbon deposition rates were observed. Interestingly, catalysts with lower MgO content achieved the highest CH4 conversion (~ 95%), high selectivity to H2 (1.7) and CO (0.8), and low carbon deposition rates (0.024 g carbon.gcat-1 h-1) with Ni4MgZr (4 mol% MgO) turning out to be the best catalyst. In situ XRD during POM indicated metallic Ni nanoparticles (average crystallite size of 31 nm), supported by MgO-ZrO2 solid solution, with small amounts of NiO-MgO being present as well. The presence of MgO also influenced the morphology of the carbon deposits, leading to filaments instead of amorphous carbon. A combustion-reforming mechanism is suggested and using a MgO-ZrO2 solid solution support strongly improves catalytic performance, which is attributed to effective O2, CO2 and H2O activation at the Ni/MgO-ZrO2 interface.

3.
Phys Chem Chem Phys ; 18(3): 2070-9, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26687828

RESUMEN

Perovskite strontium titanate is a promising functional material for gas sensors and catalysis applications. Herein, we report the preparation of SrTi1-xCuxO3 nanoparticles with Cu doped in the B sites using a modified polymeric precursor method. This study describes in detail the structural and local atomic configurations for the substitution of Cu into the titanium sites and its reducibility using X-ray diffraction (XRD), field emission gun scanning and transmission electron microscopies (FEG-SEM and TEM), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) analyses. Our results indicate that copper is segregated for x≥ 0.06. After exposing the samples to a hydrogen-rich atmosphere at temperatures over 500 K, copper is reduced from Cu(2+) to metallic Cu. This reduction was attributed to copper atoms that originated primarily from the CuO phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA