Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 58(2): 240-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20525581

RESUMEN

Supertree and supermatrix methods have great potential in the quest to build the tree of life and yet they remain controversial, with most workers opting for one approach or the other, but rarely both. Here, we employed both methods to construct phylogenetic trees of all genera of palms (Arecaceae/Palmae), an iconic angiosperm family of great economic importance. We assembled a supermatrix consisting of 16 partitions, comprising DNA sequence data, plastid restriction fragment length polymorphism data, and morphological data for all genera, from which a highly resolved and well-supported phylogenetic tree was built despite abundant missing data. To construct supertrees, we used variants of matrix representation with parsimony (MRP) analysis based on input trees generated directly from subsamples of the supermatrix. All supertrees were highly resolved. Standard MRP with bootstrap-weighted matrix elements performed most effectively in this case, generating trees with the greatest congruence with the supermatrix tree and fewest clades unsupported by any input tree. Nonindependence due to input trees based on combinations of data partitions was an acceptable trade-off for improvements in supertree performance. Irreversible MRP and the use of strictly independent input trees only provided no obvious benefits. Contrary to previous claims, we found that unsupported clades are not infrequent under some MRP implementations, with up to 13% of clades lacking support from any input tree in some irreversible MRP supertrees. To build a formal synthesis, we assessed the cross-corroboration between supermatrix trees and the variant supertrees using semistrict consensus, enumerating shared clades and compatible clades. The semistrict consensus of the supermatrix tree and the most congruent supertree contained 160 clades (of a maximum of 204), 137 of which were present in both trees. The relationships recovered by these trees strongly support the current phylogenetic classification of palms. We evaluate 2 composite supertree support measures (rQS and V) and conclude that it is more informative to report numbers of input trees that support or conflict with a given supertree clade. This study demonstrates that supertree and supermatrix methods can provide effective, explicit, and complimentary mechanisms for synthesizing disjointed phylogenetic evidence while emphasizing the need for further refinement of supertree methods.


Asunto(s)
Arecaceae/genética , Filogenia , Arecaceae/clasificación
2.
Mol Phylogenet Evol ; 46(2): 760-75, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18357644

RESUMEN

The palm tribe Chamaedoreeae reaches its higher diversity in Central America, however, its distribution ranges from the north eastern part of Mexico to Bolivia with a disjunction to the Mascarene Islands in the Indian Ocean. The disjunct distribution of Chamaedoreeae is generally considered a result of Gondwana vicariance and extinction from Africa and/or Madagascar. However, latitudinal migrations and their role in shaping the distribution of this tribe in the Americas have been largely overlooked. In this study we used seven plastid and two nuclear DNA regions to investigate the phylogenetic relationships and biogeography of the Chamaedoreeae. The resulting phylogeny fully resolved the generic relationships within the tribe. The exact area of origin of the tribe remains uncertain, but dating analyses indicated an initial diversification of the Chamaedoreeae during the Early Eocene, followed by long distance dispersion to the Mascarene Islands in the late Miocene. The radiation of Hyophorbe could have taking place on islands in the Indian Ocean now submerged, but its former presence in Africa or Madagascar cannot be ruled out. At least two independent migrations between North and South America predating the rise of the Panama isthmus need to be postulated to explain the distribution of Chamaedoreeae, one during the Middle Eocene and a second during the Miocene. Whereas the traditional interpretation of distribution of Chamaedoreeae species assumes a west Gondwana origin of the group, the findings presented in this paper make it equally possible to interpret the group as a primarily boreotropical element.


Asunto(s)
Arecaceae/clasificación , Filogenia , África , Arecaceae/genética , ADN de Plantas/química , Fósiles , Geografía , América del Norte , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Plastidios/genética , ARN Polimerasa II/genética , Análisis de Secuencia de ADN , América del Sur
3.
Mol Phylogenet Evol ; 45(1): 272-88, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17482839

RESUMEN

The Ceroxyloideae is a small but heterogeneous subfamily of palms (Arecaceae, Palmae). It includes a Caribbean lineage (tribe Cyclospathae), a southern hemisphere disjunction (tribe Ceroxyleae), and an amphi-Andean element (tribe Phytelepheae), until recently considered a distinct subfamily (Phytelephantoideae) due to its highly derived morphology. A variety of hypotheses have been proposed to account for the biogeography of the subfamily, involving Gondwanan vicariance, austral interplate dispersal from South America to Australia via Antarctica, Andean orogeny, and Pleistocene refuges. We assessed the systematic classification and biogeography of the group based on a densely sampled phylogeny using >5.5kb of DNA sequences from three plastid and two nuclear genomic regions. The subfamily and each of its three tribes were resolved as monophyletic with high support. Divergence time estimates based on penalized likelihood and Bayesian dating methods indicate that Gondwanan vicariance is highly unlikely as an explanation for basic disjunctions in tribe Ceroxyleae. Alternative explanations include a mid-Tertiary trans-Atlantic/trans-African dispersal track and the "lemurian stepping stones" hypothesis. Austral interplate dispersal of Oraniopsis to Australia could have occurred, but apparently only in the mid-Eocene/early Oligocene interval after global cooling had begun. Our data do not support Pleistocene climatic changes as drivers for speciation in the Andean-centered Phytelepheae as previously proposed. Radiation in this tribe coincides largely with the major uplift of the Andes, favoring Andean orogeny over Pleistocene climatic changes as a possible speciation-promoting factor in this tribe.


Asunto(s)
Arecaceae/genética , Geografía , Modelos Teóricos , Arecaceae/fisiología , Flujo Génico , Especiación Genética , Filogenia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA