Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(29)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38574672

RESUMEN

The presence of hematite (Fe2O3) clusters at low coverage on titanium dioxide (TiO2) surface has been observed to enhance photocatalytic activity, while excess loading of hematite is detrimental. We conduct a comprehensive density functional theory study of Fe2O3clusters adsorbed on the anatase TiO2(101) surface to investigate the effect of Fe2O3on TiO2. Our study shows that TiO2exhibits improved photocatalytic properties with hematite clusters at low coverage, as evidenced by a systematic study conducted by increasing the number of cluster adsorbates. The adsorption of the clusters generates impurity states in the band gap improving light absorption and consequently affecting the charge transfer dynamics. Furthermore, the presence of hematite clusters enhances the activity of TiO2in the hydrogen evolution reaction. The Fe valence mixing present in some clusters leads to a significant increase in H2evolution rate compared with the fixed +3 valence of Fe in hematite. We also investigate the effect of oxygen defects and find extensive modifications in the electronic properties and local magnetism of the TiO2-Fe2O3system, demonstrating the wide-ranging effect of oxygen defects in the combined system.

2.
ACS Omega ; 8(47): 45056-45064, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046343

RESUMEN

Two-dimensional (2D) heterostructures reveal novel physicochemical phenomena at different length scales that are highly desirable for technological applications. We present a comprehensive density functional theory study of van der Waals (vdW) heterostructures constructed by stacking 2D TiO2 and 2D MoSSe monolayers to form the TiO2-MoSSe heterojunction. The heterostructure formation is found to be exothermic, indicating stability. We find that by varying the atomic species at the interfaces, the electronic structure can be considerably altered due to the differences in charge transfer arising from the inherent electronegativity of the atoms. We demonstrate that the heterostructures possess a type II or type III band alignment, depending on the atomic termination of MoSSe at the interface. The observed charge transfer occurs from MoSSe to TiO2. Our results suggest that the Janus interface enables the tuning of electronic properties, providing an understanding of the possible applications of the TiO2-MoSSe heterostructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA