Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21501, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277658

RESUMEN

The pulp and paper industry generates vast quantities of paper sludge, posing significant environmental challenges due to its disposal in landfills or incineration. This study explores the potential of valorizing paper sludge by incorporating it into particleboard production. It aims to optimize sludge content and particle size to enhance board properties-a novel approach to waste management in the wood composites industry. Through systematic variation of sludge content (0-25%) and particle size (< 0.5 to > 2 mm), we assessed the mechanical and physical properties such as internal bond strength (IB), modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA), and thickness swelling (TS). The findings indicate that incorporating paper sludge at moderate levels (5-15%) with optimized particle sizes (< 1 mm) significantly improves the mechanical properties of the particleboard, including increased IB, MOR, and MOE while reducing WA and TS. Principal Component Analysis (PCA) further supported these results, revealing that higher-density boards with enhanced mechanical properties absorb less water, highlighting the interrelationship between structural integrity and moisture resistance. The PCA also identified thickness swelling as an independent factor, suggesting that while mechanical properties can be optimized, additional strategies are needed to control swelling. In conclusion, this study demonstrates that up to 15% paper sludge can be effectively used in particleboard production without compromising quality, provided particle size is carefully controlled. This approach not only offers a sustainable solution for managing paper sludge but also contributes to the development of eco-friendly composite materials, aligning with circular economy principles.

2.
Int J Biol Macromol ; 277(Pt 1): 133846, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084980

RESUMEN

This study aimed to enhance the properties of polyvinylpyrrolidone (PVP) for use as biocompatible facial masks. To achieve this, nanofibers were developed by blending PVP with cellulose nanofibers (CNFs) and Aloe vera (AV) powder using electrospinning. The results showed that incorporating CNFs and AV into the PVP matrix led to the formation of smooth and uniform nanofibers. In particular, adding 3-6 wt% AV powder in PVP/CNF composites improved fiber diameter distribution and uniformity compared to pure PVP. The PVP/CNF/AV nanofibers exhibited desirable properties for facial mask applications. They displayed 86-93 % porosity, which allowed for efficient moisture absorption capacity of up to 1829 %, and excellent water vapor permeability rate of 3.92 g/m2h. The mechanical properties of the electrospun nanofiber composites were evaluated through tensile testing. The results showed that Young's modulus values decreased progressively with the addition of CNFs and AV powder to the PVP polymer matrix, indicating a plasticizing effect that enhances flexibility. The fracture strain remained similar across all composites, suggesting that CNFs and AV did not significantly weaken the PVP matrix. The tensile strength initially increased with CNF addition but decreased with incremental AV loading. Biocompatibility studies revealed that all nanofibers exhibited excellent fibroblast viability, surpassing 98 %. This indicates that incorporating CNFs and AV did not compromise cell viability, further highlighting the suitability of the PVP/CNF/AV composites for facial mask applications.


Asunto(s)
Aloe , Materiales Biocompatibles , Celulosa , Nanofibras , Povidona , Nanofibras/química , Povidona/química , Celulosa/química , Materiales Biocompatibles/química , Aloe/química , Resistencia a la Tracción , Permeabilidad , Porosidad , Ensayo de Materiales , Animales , Vapor , Supervivencia Celular/efectos de los fármacos , Ratones , Fibroblastos/efectos de los fármacos , Fibroblastos/citología
3.
Heliyon ; 10(11): e31795, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832280

RESUMEN

Exploring the chemical processes and factors influencing the stability of the blue color derived from anthocyanins is a crucial objective in agricultural and food chemistry research. The ability of these compounds to bind with metals could potentially stabilize anthocyanins extracted from plant-based foods or enable modifying their hues for application as natural food colorants. This study had two core objectives - first, to extract and identify the major anthocyanin pigments responsible for iris flower coloration. Second, to selectively complex purified iris anthocyanins with aluminum (Al3+) and copper (Cu2+) ions, probing the coordination chemistry underlying synthetic metalloanthocyanin formation. Fresh iris flowers were collected and anthocyanins extracted using an optimized acidic solution. After separation, anthocyanins were complexed with metals Al3+ and Cu2+ at pH 5-6 to understand better the evolution of blue and green colors in anthocyanin-metal chelates. Characterization of anthocyanins and their metal complexes utilized UV-visible spectrometry, colorimetry (L\* a\*b\* values), FTIR spectroscopy, and LC-MS. Metal complexation of anthocyanins exhibited bathochromic shifts of visible absorption maxima from 538 to 584 nm for Al-complex and 538-700 nm for Cu-complex. Color changes were accompanied by decreased lightness (L\*, from 87 to 81) and color coefficients a\* (+5.4 to -6.8) and b\* (-12.2 to -4.8). LC-MS analysis identified five major anthocyanin aglycones: cyanidin (Cyd, m/z 289), delphinidin (Dpd, m/z 305), petunidin (Ptd, m/z 229), malvidin (Mv, m/z 329) and pelargonidin (m/z 273), along with various glycosylated derivatives. This work successfully isolated key iris anthocyanin pigments and elucidated their metal chelation interactions underlying expanded floral color production, bridging knowledge gaps about this underexplored genus.

4.
Int J Biol Macromol ; 270(Pt 1): 132285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735600

RESUMEN

This work focuses on the influence of ozone pretreatment on the fractionation and solubilization of sugarcane bagasse and soda bagasse pulp fibers in sodium hydroxide/urea solution, as well as the application of regenerated cellulose for producing edible films. The methodology involved pretreating lignocelluloses with ozone for 20 to 120 min before dissolving in sodium hydroxide/urea solution. The influence of the pretreatment conditions on cellulose dissolution yield was investigated. Regenerated cellulose films were then formed, with and without the addition of 2 % chitosan. Mechanical, physical, structural, thermal, and antimicrobial attributes were determined as a function of ozonation conditions of raw materials and chitosan content. The findings exhibited positive effects of short ozonation on enhancing mechanical strength, cohesion, and hydrophobicity. The prolonged ozonation of 120 min demonstrated optimal improvements in continuity, swelling, and antibacterial resistance of obtained films. Incorporating chitosan enhanced tensile performance, stiffness, and vapor barriers but increased moisture absorption. Tailoring the activation of biomass through ozone pretreatment and chitosan addition resulted in renewable films with adjustable properties to meet diverse packaging requirements, particularly for fruit protective coatings, ensuring the preservation of post-harvest quality.


Asunto(s)
Celulosa , Quitosano , Películas Comestibles , Lignina , Ozono , Quitosano/química , Ozono/química , Lignina/química , Celulosa/química , Resistencia a la Tracción , Saccharum/química , Solubilidad
5.
Sci Rep ; 14(1): 9039, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641667

RESUMEN

This work demonstrated enhanced adsorption capabilities of lignin nanoparticles (LNPs) synthesized via a straightforward hydrotropic method compared to pristine lignin (PL) powder for removing methylene blue dye from aqueous solutions. Kraft lignin was used as a precursor and p-toluenesulfonic acid as the hydrotrope to produce spherical LNPs with ~ 200 nm diameter. Extensive characterization by SEM, AFM, DLS, zeta potential, and BET verified successful fabrication of microporous LNPs with fourfold higher specific surface area (14.9 m2/g) compared to PL (3.4 m2/g). Significantly reduced particle agglomeration and rearranged surface chemistry (zeta potential of -13.3 mV) arising from the self-assembly of lignin fractions under hydrotropic conditions enabled the application of LNPs and superior adsorbents compared to PL. Batch adsorption experiments exhibited up to 14 times higher methylene blue removal capacity, from 20.74 for PL to 127.91 mg/g for LNPs, and ultrafast equilibrium uptake within 3 min for LNPs compared to 10 min for PL. Kinetic modeling based on pseudo-first-order and pseudo-second-order equations revealed chemisorption as the predominant mechanism, with a rate constant of 0.032825 g/mg·h for LNPs-over an order of magnitude higher than PL (0.07125 g/mg·h). Isotherm modeling indicated Langmuir monolayer adsorption behavior on relatively uniform lignin surface functional groups. The substantially augmented adsorption performance of LNPs arose from the increased surface area and abundance of surface functional groups, providing greater accessibility of chemically active binding sites for rapid dye uptake. Overall, this work demonstrates that tailoring lignin nanoparticle structure and surface chemistry via scalable hydrotropic synthesis is a simple and sustainable approach for producing highly efficient lignin-based nano-adsorbents for organic dye removal from industrial wastewater.

6.
Int J Biol Macromol ; 264(Pt 2): 130674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458273

RESUMEN

Microcrystalline cellulose (MCC) was successfully synthesized from sugarcane bagasse using a rapid, low-temperature hydrochloric acid (HCl) gas treatment. The primary aim was to develop an energy-efficient "green" cellulose extraction process. Response surface methodology optimized the liquid-phase hydrolysis conditions to 3.3 % HCl at 117 °C for 127 min to obtain MCC with 350 degree of polymerization. An alternative gas-phase approach utilizing gaseous HCl diluted in hot 40 °C air was proposed to accelerate MCC production. The cellulose pulp was moistened to 15-18 % moisture content and then exposed to HCl gas, which was absorbed by the moisture in the cellulose fibers to generate a highly concentrated acidic solution that hydrolyzed the cellulose. The cellulose pulp was isolated from depithed bagasse through soda pulping, multistage bleaching and cold alkali purification. Hydrolysis was conducted by saturating the moist cellulose fibers with gaseous HCl mixed with hot air. Extensive analytical characterization using FT-IR, XRD, SEM, TGA, DSC, particle size, and porosity analyses verified comparable physicochemical attributes between MCC samples prepared via liquid and gas phase methods. The gas-produced MCC revealed 85% crystallinity, 71 Å crystallite dimensions, and thermally stable rod-shaped morphology with an average diameter below 200 µm. The similar material properties validate the proposed gas-based technique as an equally effective yet more energy-efficient alternative to conventional aqueous acid hydrolysis for fabricating highly pure MCC powders from lignocellulose. This sustainable approach enables the value-addition of sugarcane bagasse agro-industrial residue into cellulosic nanomaterials for wide-ranging industrial applications. In summary, the key achievements of this work are rapid MCC production under mild temperatures using HCl gas, optimization of liquid phase hydrolysis, successful demonstration of gas phase method, and extensive characterization verifying equivalence between both protocols. The gas methodology offers a greener cellulose extraction process from biomass.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , Hidrólisis , Ácido Clorhídrico/química , Saccharum/química , Espectroscopía Infrarroja por Transformada de Fourier
7.
Sci Rep ; 14(1): 5057, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424220

RESUMEN

Chitosan and bio-based epoxy resins have emerged as promising formaldehyde-free replacements for traditional urea-formaldehyde (UF) adhesives in engineered wood products. This study evaluated five chitosan-to-epoxy weight ratios (3:1, 2:1, 1:1, 1:2, 1:3) as adhesives for hot-pressing medium density fiberboards (MDF) using mixed hardwood fibers. Increasing the epoxy ratio reduced viscosity and gel time, facilitating spraying and fast curing. The density of the formulated MDFs increased with higher epoxy ratios, ranging from 679 kg/m3 for the 3:1 ratio to 701 kg/m3 for the 1:3 formulation, meeting the 500-900 kg/m3 density range specified in EN 323. The 1:3 epoxy-rich formulation enhanced modulus of rupture (MOR) to 31 MPa and modulus of elasticity (MOE) to 2392 MPa, exceeding the minimum requirements of 16 MPa and 1500 MPa set out in EN 310 and EN 316, respectively. Dimensional stability peaked at 5% thickness swelling for the 1:3 formulation after 24 h water soaking, fulfilling the < 25% requirement per EN 316. Internal bond strength reached a maximum of 0.98 MPa for the 3:1 chitosan-rich formulation, satisfying the 0.40 MPa minimum per EN 319. One-way ANOVA tests showed the adhesive ratio had a significant effect on mechanical properties and dimensional stability at 95-99% confidence levels. Duncan's multiple range test revealed the 1:3 ratio boards exhibited statistically significant improvements compared to untreated group. Overall, tailoring the ratios achieved well-balanced properties for MOR, MOE, and dimensional stability, demonstrating potential to replace UF resins.

8.
Int J Biol Macromol ; 261(Pt 1): 129687, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272414

RESUMEN

Airborne particulate matter is a pressing environmental and public health concern globally. This study aimed to develop sustainable filtration materials from cellulose nanofibers (CNFs) modified with graphene oxide (GO) to capture fine particulates from air effectively. CNFs were extracted from α-cellulose via mechanical grinding and modified with 0.5-1.5 wt% GO solution by ultrasonication to produce CNF-GO nanocomposites. These were freeze-dried into highly porous, lightweight aerogels for air filtration applications. Fourier transform infrared spectroscopy (FT-IR) confirmed GO incorporation through hydroxyl group interactions. Field emission scanning electron microscopy (FE-SEM) revealed a porous 3D network with reduced porosity after GO addition due to pore blocking. X-ray diffraction analysis showed the cellulose I crystal structure was retained after modification. Brunauer-Emmett-Teller (BET) measurements indicated increased density but decreased surface area and pore volume with GO loading. The thermogravimetric analysis demonstrated improved thermal stability with GO incorporation due to oxidative reactions and a barrier effect. The particulate absorption efficiency markedly increased from 86.37 % to 99.98 % for CNFs modified with 1.5 wt% GO due to the high surface area, surface oxygen functionalities, and nanoplatelet morphology of GO. The nanofiber filters with 1.5 wt% GO exhibited a maximum absorption efficiency of 99.98 % and a quality factor of 0.0912 Pa-1. Although GO reduced biodegradability, substantial degradation occurred under soil conditions. Overall, the sustainable, high-efficiency CNF-GO air filters developed in this work demonstrate immense promise for controlling air pollution and protecting human health.


Asunto(s)
Grafito , Nanofibras , Humanos , Nanofibras/química , Material Particulado , Espectroscopía Infrarroja por Transformada de Fourier , Celulosa/química
9.
Bioresour Technol ; 395: 130358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253243

RESUMEN

This study investigated an innovative strategy of incorporating surfactants into alkaline-catalyzed glycerol pretreatment and enzymatic hydrolysis to improve lignocellulosic biomass (LCB) conversion efficiency. Results revealed that adding 40 mg/g PEG 4000 to the pretreatment at 195 °C obtained the highest glucose yield (84.6%). This yield was comparable to that achieved without surfactants at a higher temperature (240 °C), indicating a reduction of 18.8% in the required heat input. Subsequently, Triton X-100 addition during enzymatic hydrolysis of PEG 4000-assisted pretreated substrate increased glucose yields to 92.1% at 6 FPU/g enzyme loading. High-solid fed-batch semi-simultaneous saccharification and co-fermentation using this dual surfactant strategy gave 56.4 g/L ethanol and a positive net energy gain of 1.4 MJ/kg. Significantly, dual assistance with surfactants rendered 56.3% enzyme cost savings compared to controls without surfactants. Therefore, the proposed surfactant dual-assisted promising approach opens the gateway to economically viable enzyme-mediated LCB biorefinery.


Asunto(s)
Celulosa , Glicerol , Hidrólisis , Celulosa/metabolismo , Tensoactivos , Biomasa , Fermentación , Glucosa
10.
Int J Biol Macromol ; 256(Pt 1): 128204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979763

RESUMEN

Air pollution is a major environmental and public health issue. Each year, large amounts of particulate matter (PM) and other harmful pollutants are released into the atmosphere. Conventional polymer nanofiber filters lack the functionality to capture ultrafine PM. As a sustainable alternative, this work developed titanium dioxide (TiO2) nanoparticle surface-modified cellulose nanofiber (CNF) aerogels for PM2.5 filtration. CNFs were extracted via mechanical disintegration to diameters below 100 nm. The nanofibers were functionalized with 1.0-2.5 wt% TiO2 nanoparticles using citric acid cross-linking. Cylindrical aerogels were fabricated by freezing and lyophilizing aqueous suspensions. Structural, morphological, thermal, and mechanical properties were characterized. TiO2 modification increased density (11.8-19.7 mg/cm3), specific surface area (287-370 m2/g), and Young's modulus (33.5-125.5 kPa) but decreased porosity (99.6 %-97.7 %), pore size (20.2-15.6 nm) and thermal stability compared to unmodified cellulose aerogels. At 2.5 wt% loading, the optimized aerogels achieved 100 % absorption of 0.1-5 µm particulates owing to reduced pore size. Despite enhanced filtration capabilities, the modified CNF aerogels retained inherent biodegradability, degrading over 70 % within one month of soil burial. This pioneering research establishes TiO2 functionalized CNF aerogels as promising sustainable alternatives to traditional petroleum-based air filters, representing an innovative approach to creating next-generation nanofiltration materials capable of effectively capturing fine and ultrafine particulate matter pollutants.


Asunto(s)
Contaminantes Ambientales , Nanofibras , Nanopartículas , Titanio , Nanofibras/química , Geles/química , Celulosa/química
11.
Int J Biol Macromol ; 253(Pt 8): 127118, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802434

RESUMEN

Superabsorbent hydrogels (SAHs) are essential in various applications, including hygienic products like adult incontinence pads. However, synthetic-based super absorbent polymers (SAPs) dominate the market despite being non-biodegradable. Alternatively, bio-based hydrogels, such as sodium alginate (SA)-based hydrogels, offer biodegradable alternatives. In this study, we aimed to enhance the practical applied properties of SA-based hydrogels by grafting SA with acrylic acid (AA) and incorporating cellulose nanocrystals (CNCs). Specifically, we investigated the potential of interpenetrating network (IPN) and semi-interpenetrating network (S-IPN) hydrogels as absorbent materials in adult incontinence pads. The fabricated SAHs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). They were also evaluated for absorption and rheological properties. The results showed that in IPN/SAHs, the addition of CNCs decreased pore sizes, while in S-IPN/SAHs, CNC incorporation increased pore sizes. The S-IPN/SAHs exhibited a significantly higher free swelling capacity (FSC) with CNCs loading, reaching 142.29 g/g in 0.9 % NaCl solution and 817.4 g/g in distilled water. On the other hand, IPN/SAHs showed a higher storage modulus and lower loss modulus compared to S-IPN/SAHs. Notably, the superior samples from this study showed a 33 % reduction in SAP consumption compared to commercial SAPs, making them more cost-effective for adult incontinence pad manufacturers. Overall, our research demonstrates the potential of interpenetrating and semi-interpenetrating network superabsorbent hydrogels as high-performance absorbent materials. The results offer improved absorbency and cost savings for producers of adult incontinence pads, and bio-based hydrogels like SA-based hydrogels are promising biodegradable alternatives to synthetic-based SAPs.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Alginatos/química , Pañales para la Incontinencia , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química
12.
Int J Biol Macromol ; 246: 125721, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419257

RESUMEN

Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.


Asunto(s)
Filtros de Aire , Nanofibras , Humanos , Hidrogeles/química , Nanofibras/química , Celulosa/química , Polímeros
13.
Int J Biol Macromol ; 244: 125344, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327938

RESUMEN

Pollution from particulate matter (PM) and toxic chemicals in the air cause some of the most critical health and environmental hazards in developed and developing countries. It can have a very destructive effect on human health and other living creatures. In particular, PM air pollution caused by rapid industrialization and population growth is a grave concern in developing countries. Oil and chemical-based synthetic polymers are non-environmentally friendly materials that lead to secondary environmental pollution. Thus, developing new and environmentally compatible renewable materials to construct air filters is essential. The goal of this review is to study the use of cellulose nanofibers (CNF) to adsorb PM in the air. Some of CNF's advantages include being the most abundant polymer in nature, biodegradable, and having a high specific surface area, low density, surface properties (broad possibility of chemical surface modification), high modulus and flexural stiffness, low energy consumption, which provide this new class of bio-based adsorbent with promising potential applications in environmental remediation. Such advantages have made CNF a competitive and highly in-demand material compared to other synthetic nanoparticles. Today, refining membranes and nanofiltration manufacturing are two important industries that could use CNF to provide a practical step in protecting the environment and saving energy. CNF nanofilters are capable of nearly eliminating most sources of air pollution, including carbon monoxide, sulfur oxides, nitrogen oxides, and PM2.5-10 µm. They also have a high porosity and low resistance air (pressure drop) ratio compared to ordinary filters made from cellulose fiber. If utilized correctly, humans do not need to inhale harmful chemicals.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos , Nanofibras , Humanos , Material Particulado/análisis , Dióxido de Carbono , Nanofibras/química , Celulosa
14.
Int J Biol Macromol ; 223(Pt A): 100-107, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36347362

RESUMEN

This study focuses on developing a microarchitectural bilayer structure for stimulating the two top layers of skin tissue (epidermis and dermis) fabricated using a one-step freeze-drying method. Cellulose nanofibers (CNFs) and poly (vinyl) alcohol (PVA) were used as a biocompatible scaffolding material, and the composition was designed in such a way that it provides physical and biological property attributes. In this work, scaffolding materials with integrated layer structures and well interconnected and open pore structures were obtained. This bilayer structure had porosity with a pore size of 19.72 µm and 90.71 µm for the simulation of the epidermis and dermis, respectively. The production and expression of laminin, collagen IV, and keratin 10 proteins in the bilayer cryogel scaffolds obtained from the immunofluorescence study were 49.7 %, 63.8 %, and 49.3 %, respectively. The extracellular matrix (ECM) was produced in each scaffold layer. The observations confirmed that the porosity and pore size of both N1 and N2 layers were appropriate for the fibroblast and keratinocyte cells, respectively. H&E stained cross-sections of bilayer cryogel scaffolds illustrated epidermal and dermal layers produced by co-culturing keratinocytes and fibroblasts. Based on the results, the bilayer CNF/PVA scaffold can be used in skin tissue engineering applications. However, more experiments and in vivo evaluations are needed to express this conclusion more accurately.


Asunto(s)
Criogeles , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Queratinocitos , Fibroblastos , Materiales Biocompatibles/química , Porosidad , Alcohol Polivinílico
15.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335540

RESUMEN

The aim of this research was to fabricate a burn dressing in the form of hydrogel films constructed with cellulose nanofibers (CNF) that has pain-relieving properties, in addition to wound healing. In this study, the hydrogels were prepared in the form of film. For this, CNF at weight ratios of 1, 2, and 3 wt.%, 1 wt.% of hydroxyethyl cellulose (HEC), and citric acid (CA) crosslinker with 10 and 20 wt.% were used. FE-SEM analysis showed that the structure of the CNF was preserved after hydrogel preparation. Cationization of CNF by C6H14NOCl was confirmed by FTIR spectroscopy. The drug release analysis results showed a linear relationship between the amount of absorption and the concentration of the drug. The MTT test (assay protocol for cell viability and proliferation) showed the high effectiveness of cationization of CNF and confirmed the non-toxicity of the resulting hydrogels.

16.
Int J Biol Macromol ; 203: 601-609, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122799

RESUMEN

Nanofilters made with high adsorption freeze-dried modified cellulose nanofiber (CNF) aerogel were produced. The modification was made using functional groups containing phthalimide, and then their ability to adsorb particulate matter (PM) was evaluated and compared with the control filter (HEPA). The results showed that the highest adsorption of PM2.5 (99.95%) belonged to the nanofilters made of 1.5% phthalimide-modified CNF aerogel, and the lowest adsorption (76.66%) was related to the control samples. Moreover, based on the results, the nanofilter produced from freeze-dried phthalimide-modified CNF aerogel showed high filtration efficiency as well as excellent resistance to temperature and humidity. This modification enables the filter to operate in different environmental conditions, especially for particles less than 0.1 µm that are mainly responsible for reducing air quality, human health, air visibility, and climate change. In conclusion, we developed an environmentally friendly biodegradable nanofilter capable of high-performance filtration functions and structural stability in different environmental conditions.


Asunto(s)
Filtros de Aire , Nanofibras , Adsorción , Celulosa/química , Humanos , Nanofibras/química , Material Particulado
17.
Int J Biol Macromol ; 182: 1392-1398, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000313

RESUMEN

One of the most important environmental issues in the world today is the problem of air pollution, which includes particulate matter (PM) and greenhouse gases (mainly CO2). The production of efficient sustainable filters to overcome this concern as well as to provide an alternative to synthetic petroleum-based filters remains a demanding challenge. The purpose of this research was to first produce novel cellulose nanofibers (CNF) based nanofilter from a combination of CNF and chitosan (CS) and then evaluate its applicability for air purification. A number of structural and chemical properties as well as CO2 and PM adsorption efficiency of the modified CNF, were determined using advanced characterization techniques. After pretests, we determined the optimum loading for the CS was 1 wt%, and upon producing the samples, the CNF loadings (1, 1.5, and 2 wt%) were chosen as one variable. For particle absorption, the PM sizes (0.1, 0.3, 0.5, and 2.5 µm) were kept as other variables. Based on SEM results, we concluded the higher the concentration of CNF the higher the specific surface area and the lower the porosity and the diameter of the pores, which was confirmed by the BET test. Furthermore, the results showed that increasing the concentration of modified CNFs increases the adsorption rate of CO2 and PM and that the highest adsorption of CO2 and PM belonged to the 2% modified CNF.


Asunto(s)
Aire , Celulosa/química , Filtración/instrumentación , Nanofibras/química , Adsorción , Análisis de Varianza , Dióxido de Carbono/química , Celulosa/ultraestructura , Nanofibras/ultraestructura , Material Particulado/análisis , Porosidad , Presión , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
18.
Carbohydr Polym ; 258: 117675, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593551

RESUMEN

Chitosan, a well-known biopolymer due to its unique properties, has received considerable attention as a result of the amine group activity that locates on the backbone of chitosan. To improve the mechanical and antibacterial characteristics of chitosan, various modifications have been used. Amino acids, the monomeric units of proteins, among all other compounds have been chosen to discuss as promising materials for wound healing in combination with chitosan. This review aims to provide an up-to-date overview of the methods used for modification of chitosan and the potential biomedical application, in particular wound healing, reported in the literature during the last five years.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Quitosano/química , Cicatrización de Heridas/efectos de los fármacos , Aminas/química , Aminoácidos/química , Animales , Arginina/química , Vendajes , Materiales Biocompatibles/química , Biopolímeros , Adhesión Celular , Celulosa/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Ratones , Péptidos/química , Polímeros/química , Porosidad
19.
Carbohydr Polym ; 230: 115606, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887878

RESUMEN

In this research, biocomposite films containing chitosan (CS), polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), with different ratios, have been provided. The effects of adding hexamethylene 1, 6-di(aminocarboxysulfonate) (HMDACS) as cross-linking agent and the formation of urethane linkage on mechanical properties such as tensile strength, elongation and dynamic-mechanical properties such as storage modulus and tan δ were studied. Also, the antibacterial properties of the composites were investigated by viable bacterial cell counting and compared in reducing the bacterial growth. The final results showed the composite containing CS (50 wt%), PVA (30 wt%), PVP (20 wt%) and HMDACS (2 wt%) had the highest mechanical properties. Scanning electron microscopy (SEM) micrographs confirmed uniform distribution of components in the polymer matrix. In general, low contact angle values revealed the hydrophilicity of the prepared films. It was found that the composites made by combining CS, PVA and PVP at concentration of 50, 25, 25 wt% (A3) and 60, 20, 20 wt% (B4), cross-linked with 2 wt% HMDACS, had the best antibacterial activity against Escherichia coli and Staphylococcus aureus, hence they can be used as promising materials for the preparation of wound dressings.


Asunto(s)
Vendas Hidrocoloidales , Quitosano/análogos & derivados , Nanocompuestos/química , Uretano/química , Antibacterianos/química , Antibacterianos/farmacología , Reactivos de Enlaces Cruzados/química , Escherichia coli/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Polivinilos/química , Staphylococcus aureus/efectos de los fármacos
20.
Carbohydr Polym ; 230: 115571, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887944

RESUMEN

A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C-N, and ester bonding COO- was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3-,NH3+ and ester bonding NCOO- were visible on the spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA