Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(22): 228002, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286785

RESUMEN

We experimentally analyze the compaction dynamics of an ensemble of cubic particles submitted to a novel type of excitation. Instead of the standard tapping procedure used in granular materials we apply alternative twists to the cylindrical container. Under this agitation, the development of shear forces among the different layers of cubes leads to particle alignment. As a result, the packing fraction grows monotonically with the number of twists. If the intensity of the excitations is sufficiently large, an ordered final state is reached where the volume fraction is the densest possible compatible with the boundary condition. This ordered final state resembles the tetratic or cubatic phases observed in colloids.

2.
Phys Rev E ; 96(2-1): 022904, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950638

RESUMEN

We present numerical and experimental results on the mass flow rate during the discharge of three-dimensional silos filled with a bidisperse mixture of grains of different sizes. We analyzed the influence of the ratio between coarse and fine particles on the profile of volume fraction and velocity across the orifice. By using numerical simulations, we have shown that the velocity profile has the same shape as that in the monodisperse case and is insensitive to the composition of the mixture. On the contrary, the volume fraction profile is strongly affected by the composition of the mixture. Assuming that an effective particle size can be introduced to characterize the mixture, we have shown that previous expression for the mass flow rate of monodisperse particles can be used for binary mixtures. A comparison with Beverloo's correlation is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA