Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 15(6): 492-501, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29580178

RESUMEN

Because nanomaterials have been increasingly developed and used in many technology and industry sectors over the last 20 years, an increasing number of workers is likely to be exposed to airborne nanoparticles. In addition, the question of the nanomaterial characteristics that should be assessed in epidemiological studies remains open. Thus, assessing occupational exposure to airborne nanoparticles will not only rely on mass concentration and chemical composition. Rather, key parameters, such as particle size, have to be included in measurement strategies. We previously proposed a methodology to estimate the Count Median Diameter (CMD) of an aerosol based on the simultaneous size-integrated measurement of two particle concentrations, lung-deposited surface area, and number, thanks to field-portable, commercially available aerosol instruments (Nanoparticle Surface Area Monitor/Condensation Particle Counter combination). In addition to previous work, this study investigates the case of various polydisperse metal oxides, organic oil, and salt particles with CMDs ranging from 16-410 nm. Once corrected, the CMDs derived from the NSAM/CPC agree within ±20% with regard to the reference electrical mobility equivalent diameter, regardless of aerosol composition, morphology, or geometric standard deviation (GSD). Furthermore, the field-applicability of the method was tested through 6 sets of experimental data stemming from workplace measurement campaigns where different materials were produced and handled (TiO2, SiO2, Ag, Multi-Walled Carbon Nanotubes-MWCNT), covering a range of CMDs between 40 and 190 nm. All situations considered, the approach based on the combination of a NSAM and a CPC leads to a satisfying estimation of particle CMD, within ±20% compared to reference CMD.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Nanopartículas/análisis , Exposición Profesional/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Lugar de Trabajo
2.
Part Fibre Toxicol ; 13(1): 62, 2016 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-27888833

RESUMEN

BACKGROUND: Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 µm) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. ​METHODS: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-µm-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 µg/ml, 45 µg/ml, 90 µg/ml and 180 µg/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-α, and H2O2. RESULTS: Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 µg/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-α. However, compared to the positive control, the released levels of H2O2 and TNF-α were still moderate, but their release profiles depended on the type of composite. CONCLUSIONS: Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction.


Asunto(s)
Resinas Compuestas , Polvo , Macrófagos Alveolares/metabolismo , Animales , Células Cultivadas , Estrés Oxidativo , Ratas
3.
Acta Biomater ; 10(1): 365-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121193

RESUMEN

Dental composites typically contain high amounts (up to 60 vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (<100 nm) during abrasive procedures to shape, finish or remove restorations but, so far, whether airborne nanoparticles are released has never been investigated. In this study, composite dust was analyzed in real work conditions. Exposure measurements of dust in a dental clinic revealed high peak concentrations of nanoparticles in the breathing zone of both dentist and patient, especially during aesthetic treatments or treatments of worn teeth with composite build-ups. Further laboratory assessment confirmed that all tested composites released very high concentrations of airborne particles in the nanorange (>10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70 nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs.


Asunto(s)
Resinas Acrílicas/química , Resinas Compuestas/química , Nanopartículas/análisis , Poliuretanos/química , Polvo/análisis , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Nanopartículas/ultraestructura , Tamaño de la Partícula , Material Particulado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA