Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2305320, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37736693

RESUMEN

Bipolar plates, a critical component of proton exchange membrane fuel cell (PEMFC), are constructed out of alloys of Ti, Pt, Cr, or graphitic materials that have limitations. Electrical conductivity, cost, and corrosion resistance are among the critical considerations for bi-polar plate material. Graphene, which possesses impressive conductivity and toughness, is an attractive option as coating on metallic substrates of PEMFC bipolar plates. This study investigates corrosion resistance and its durability due to graphene developed by chemical vapor deposition on a pure Ni-Cu alloy and a commercial Ni-Cu alloy in 0.5 m H2 SO4 environment, with a view to exploring use of graphene coated Ni-Cu alloys for the construction of PEMFC bipolar plates. The graphene coating on the pure alloy shows remarkably superior corrosion resistance than the commercial alloy that is attributed to the former's ability to develop considerably defect-free graphene.

2.
Small ; : e2302498, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37309278

RESUMEN

Graphene coatings developed by chemical vapor deposition (CVD) that possess extraordinary/unique characteristics as barrier against aggressive environment can improve the corrosion resistance of Ni and Cu by up to two orders of magnitude. However, because of some compelling technical reasons, it has thus far been a nontrivial challenge to develop graphene coatings on the most commonly used engineering alloy, mild steel (MS). To circumvent the challenge simply by first electroplating MS with a Ni layer is attempted, and then developing CVD graphene over the Ni layer. However, this approach proved too simplistic and does not work. This necessitated an innovative surface modification of MS (based on basic metallurgical principles) that enabled successful CVD of graphene coating on MS. The graphene coating thus developed is demonstrated to improve the corrosion resistance of mild steel by two orders of magnitude in an aggressive chloride solution, through electrochemical testing. This improvement was not only sustained for the entire test duration of >1000 h; but there is a clear trend for the resistance to be possibly everlasting. The optimized surface modification that enabled development of CVD graphene coating on mild steel is generic in nature, and it should enable graphene coating on other alloy systems, which would otherwise not be possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA