Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34397384

RESUMEN

The neural crest is a migratory population of stem-like cells that contribute to multiple traits including the bones of the skull, peripheral nervous system, and pigment. How neural crest cells differentiate into diverse cell types is a fundamental question in the study of vertebrate biology. Here, we use single-cell RNA sequencing to characterize transcriptional changes associated with neural crest cell development in the zebrafish trunk during the early stages of migration. We show that neural crest cells are transcriptionally diverse and identify pre-migratory populations already expressing genes associated with differentiated derivatives, specifically in the xanthophore lineage. Further, we identify a population of Rohon-Beard neurons in the data. The data presented identify novel genetic markers for multiple trunk neural crest cell populations and Rohon-Beard neurons providing insight into previously uncharacterized genes critical for vertebrate development.


Asunto(s)
Movimiento Celular , Marcadores Genéticos , Cresta Neural/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Pez Cebra/embriología , Animales , Linaje de la Célula , Embrión no Mamífero , Expresión Génica , Neuronas/fisiología
2.
Birth Defects Res ; 112(18): 1401-1402, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33030309
3.
Mol Carcinog ; 59(9): 1052-1063, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562448

RESUMEN

Melanoma is an aggressive, deadly skin cancer derived from melanocytes, a neural crest cell derivative. Melanoma cells mirror the developmental program of neural crest cells in that they exhibit the same gene expression patterns and utilize similar cellular mechanisms, including increased cell proliferation, epithelial-mesenchymal transition, and migration. Here we studied the role of neural crest regulator PRDM1 in melanoma onset and progression. In development, Prdm1a functions to promote neural crest progenitor fate, and in melanoma, we found that PRDM1 has reduced copy number and is recurrently deleted in both zebrafish and humans. When examining expression of neural crest and melanocyte development genes, we show that sox10 progenitor expression is high in prdm1a-/- mutants, while more differentiated melanocyte markers are reduced, suggesting that normally Prdm1a is required for differentiation. Data mining of human melanoma datasets indicates that high PRDM1 expression in human melanoma is correlated with better patient survival and decreased PRDM1 expression is common in metastatic tumors. When one copy of prdm1a is lost in the zebrafish melanoma model Tg(mitfa:BRAFV600E );p53-/- ;prdm1a+/- , melanoma onset occurs more quickly, and the tumors that form have a larger area with increased expression of sox10. These data demonstrate a novel role for PRDM1 as a tumor suppressor in melanoma.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Melanocitos/patología , Melanoma/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Diferenciación Celular , Células Cultivadas , Progresión de la Enfermedad , Humanos , Melanocitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Pronóstico , Tasa de Supervivencia , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
4.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32044379

RESUMEN

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/fisiología , Histona Metiltransferasas/fisiología , Proteína del Locus del Complejo MDS1 y EV11/fisiología , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Cromatina/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Oído Medio/anomalías , Oído Medio/embriología , Huesos Faciales/embriología , Femenino , Genes Letales , Código de Histonas/genética , Histona Metiltransferasas/deficiencia , Histona Metiltransferasas/genética , Histonas/metabolismo , Maxilares/embriología , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Metilación , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/genética , Especificidad de la Especie , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
5.
J Dev Biol ; 6(4)2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424580

RESUMEN

Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the Kat2ahat/hat (also called Gcn5) allele in mice. kat2a and kat2b are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double kat2a and kat2b zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including sox9a and col2a1, and runx2a and runx2b, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of Runx2 and cartilage markers (Sox9, Col2a1). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.

6.
Dev Biol ; 444 Suppl 1: S274-S286, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29604249

RESUMEN

Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway.


Asunto(s)
Cadherinas/metabolismo , Cadherinas/fisiología , Cresta Neural/citología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Diferenciación Celular/genética , Movimiento Celular/fisiología , Melanocitos/citología , Melanocitos/metabolismo , Cresta Neural/fisiología , Pigmentación/fisiología , Protocadherinas , Piel/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
8.
Dev Biol ; 415(2): 171-187, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26808208

RESUMEN

The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.


Asunto(s)
Anomalías Craneofaciales/genética , Modelos Animales de Enfermedad , Desarrollo Maxilofacial/genética , Animales , Embrión de Pollo , Anomalías Craneofaciales/embriología , Bases de Datos Factuales , Elementos de Facilitación Genéticos , Predicción , Regulación del Desarrollo de la Expresión Génica/genética , Estudios de Asociación Genética , Cabeza/embriología , Humanos , Ratones , Mutagénesis , Mutación , Cresta Neural/embriología , Especificidad de la Especie , Xenopus , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
9.
Dev Biol ; 407(2): 289-99, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26256768

RESUMEN

Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Cresta Neural/citología , Cresta Neural/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Extensiones de la Superficie Celular/metabolismo , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Torso/embriología , Proteínas de Pez Cebra/genética
10.
Genesis ; 53(3-4): 270-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25810090

RESUMEN

Cranial neural crest cells are specified and migrate into the pharyngeal arches where they subsequently interact with the surrounding environment. Signaling and transcription factors, such as prdm1a regulate this interaction, but it remains unclear which specific factors are required for posterior pharyngeal arch development. Previous analysis suggests that prdm1a is required for posterior ceratobranchial cartilages in zebrafish and microarray analysis between wildtype and prdm1a mutants at 25 h post fertilization demonstrated that integrin α5 (itga5) is differentially expressed in prdm1a mutants. Here, we further investigate the interaction between prdm1a and itga5 in zebrafish craniofacial development. In situ hybridization for itga5 demonstrates that expression of itga5 is decreased in prdm1a mutants between 18 and 31 h post fertilization and itga5 expression overlaps with prdm1a in the posterior arches, suggesting a temporal window for interaction. Double mutants for prdm1a;itga5 have an additive viscerocranium phenotype more similar to prdm1a mutants, suggesting that prdm1a acts upstream of itga5. Consistent with this, loss of posterior pharyngeal arch expression of dlx2a, ceratobranchial cartilages 2-5, and cell proliferation in prdm1a mutants can be rescued with itga5 mRNA injection. Taken together, these data suggest that prdm1a acts upstream of itga5 and are both necessary for posterior pharyngeal arch development in zebrafish.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/metabolismo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Integrina alfa5/metabolismo , Proteínas Nucleares/metabolismo , Cráneo/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Embrión no Mamífero/citología , Cara/fisiología , Hibridación in Situ , Integrina alfa5/genética , Mutación/genética , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Cráneo/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
J Cell Sci ; 127(Pt 10): 2291-301, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634509

RESUMEN

Precise spatiotemporal regulation of the SIX1 homeoprotein is required to coordinate vital tissue development, including myogenesis. Whereas SIX1 is downregulated in most tissues following embryogenesis, it is re-expressed in numerous cancers, including tumors derived from muscle progenitors. Despite crucial roles in development and disease, the upstream regulation of SIX1 expression has remained elusive. Here, we identify the first direct mechanism for Six1 regulation in embryogenesis, through microRNA30a (miR30a)-mediated repression. In zebrafish somites, we show that miR30a and six1a and six1b (hereafter six1a/b) are expressed in an inverse temporal pattern. Overexpression of miR30a leads to a reduction in six1a/b levels, and results in increased apoptosis and altered somite morphology, which phenocopies six1a/b knockdown. Conversely, miR30a inhibition leads to increased Six1 expression and abnormal somite morphology, revealing a role for endogenous miR30a as a muscle-specific miRNA (myomiR). Importantly, restoration of six1a in miR30a-overexpressing embryos restores proper myogenesis. These data demonstrate a new role for miR30a at a key node in the myogenic regulatory gene network through controlling Six1 expression.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Proteínas de Homeodominio/biosíntesis , MicroARNs/biosíntesis , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
12.
Development ; 140(16): 3445-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23900542

RESUMEN

The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Cresta Neural/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Factor de Transcripción AP-2/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Sitios de Unión , Tipificación del Cuerpo , Proteínas de Unión al ADN/genética , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cresta Neural/metabolismo , Placa Neural/crecimiento & desarrollo , Placa Neural/metabolismo , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factor de Transcripción AP-2/genética , Activación Transcripcional , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
Dev Dyn ; 242(7): 817-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23559552

RESUMEN

BACKGROUND: The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS: This set of ∼80 genes was used for a high-throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53-dependent and -independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS: This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human.


Asunto(s)
Huesos Faciales/embriología , Huesos Faciales/metabolismo , Cráneo/embriología , Cráneo/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Morfolinos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Dev Biol ; 357(1): 269-81, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741961

RESUMEN

Invertebrate and vertebrate vestigial (vg) and vestigial-like (VGLL) genes are involved in embryonic patterning and cell fate determination. These genes encode cofactors that interact with members of the Scalloped/TEAD family of transcription factors and modulate their activity. We have previously shown that, in mice, Vgll2 is differentially expressed in the developing facial prominences. In this study, we show that the zebrafish ortholog vgll2a is expressed in the pharyngeal endoderm and ectoderm surrounding the neural crest derived mesenchyme of the pharyngeal arches. Moreover, both the FGF and retinoic acid (RA) signaling pathways, which are critical components of the hierarchy controlling craniofacial patterning, regulate this domain of vgll2a expression. Consistent with these observations, vgll2a is required within the pharyngeal endoderm for NCC survival and pharyngeal cartilage development. Specifically, knockdown of Vgll2a in zebrafish embryos using Morpholino injection results in increased cell death within the pharyngeal arches, aberrant endodermal pouch morphogenesis, and hypoplastic cranial cartilages. Overall, our data reveal a novel non-cell autonomous role for Vgll2a in development of the NCC-derived vertebrate craniofacial skeleton.


Asunto(s)
Cresta Neural/citología , Cresta Neural/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Supervivencia Celular , Embrión no Mamífero/metabolismo , Huesos Faciales/embriología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Cráneo/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Dev Biol ; 356(2): 496-505, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21689645

RESUMEN

The zinc finger domain transcription factor prdm1a plays an integral role in the development of the neural plate border cell fates, including neural crest cells and Rohon-Beard (RB) sensory neurons. However, the mechanisms underlying prdm1a function in cell fate specification is unknown. Here, we test more directly how prdm1a functions in this cell fate decision. Rather than affecting cell death or proliferation at the neural plate border, prdm1a acts explicitly on cell fate specification by counteracting olig4 expression in the neighboring interneuron domain. olig4 expression is expanded in prdm1a mutants and olig4 knockdown can rescue the reduced or abrogated neural crest and RB neuron phenotype in prdm1a mutants, suggesting a permissive role for prdm1a in neural plate border-derived cell fates. In addition, prdm1a expression is upregulated in the absence of Notch function, and inhibiting Notch signaling fails to rescue prdm1a mutants. This suggests that prdm1a functions downstream of Notch in the regulation of cell fate at the neural plate border and that Notch regulates the total number of progenitor cells at the neural plate border.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/fisiología , Placa Neural/citología , Proteínas Nucleares/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Apoptosis , Proliferación Celular , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología , Factor 1 de Unión al Dominio 1 de Regulación Positiva
16.
Cell Adh Migr ; 4(4): 595-608, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20962584

RESUMEN

The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.


Asunto(s)
Movimiento Celular , Cresta Neural/metabolismo , Xenopus laevis/embriología , Pez Cebra/embriología , Animales , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mesodermo/metabolismo , Cresta Neural/citología , Filogenia , Transducción de Señal , Proteínas Wnt/metabolismo , Xenopus laevis/genética , Pez Cebra/genética
17.
Genesis ; 48(11): 656-66, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20836130

RESUMEN

The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Homeodominio/genética , Cresta Neural/embriología , Proteínas Nucleares/fisiología , Factores de Transcripción SOXE/genética , Células Receptoras Sensoriales/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción SOXE/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Biol Bull ; 217(2): 151-60, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19875820

RESUMEN

The oral apparatus in lancelets undergoes a remarkable modification during larval development, especially during metamorphosis, when the oral innervation is radically altered. The larval mouth opens on the left side at the early larval stage, and a peripheral nerve network, the oral nerve ring (ONR), develops around it. The ONR enlarges as the mouth expands caudally, eventually receiving fibers from nerves as far back as the tenth on the left side. The mouth shrinks during metamorphosis, and with this change the ONR regresses; the posterior sixth to tenth nerves become freed from the connection with the ONR, whereas the fourth and fifth nerves retain their connections. This modification is the basis for the asymmetric innervation to the velum. There is no mesodermal or mesenchymal restriction for guiding nerve patterning as typically found in vertebrate cranial nerves. Rather, it seems to be the ONR, which has no counterpart in vertebrates, that plays pivotal roles for patterning the nervous system in the oral region. The oral innervation pattern in lancelets represents a derived character state that may be related to the asymmetry of the ancestral body and head.


Asunto(s)
Cordados/anatomía & histología , Cordados/crecimiento & desarrollo , Metamorfosis Biológica , Boca/inervación , Animales , Larva/anatomía & histología , Larva/fisiología , Microscopía Confocal , Microscopía Fluorescente
20.
Dev Dyn ; 238(10): 2575-87, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19777590

RESUMEN

Multiple tissue interactions and signaling within the pharyngeal arches are required for development of the craniofacial skeleton. Here, we focus on the role of the transcription factor prdm1a in the differentiation of the posterior skeleton. prdm1a is expressed in the presumptive pharyngeal arch region and later in an endodermal pouch, the otic vesicle, and pharyngeal teeth. prdm1a mutants display a reduction in pharyngeal arch markers, a loss of posterior ceratobranchial cartilages, and a reduction in most neural crest-derived dermal bones. This is likely caused by a decrease in the number of proliferating cells but not an increase in cell death. Finally, a reduction in two key developmental signaling pathways, Fgf and retinoic acid, alters prdm1a expression, suggesting that prdm1a expression is mediated by these signaling pathways to pattern the posterior craniofacial skeleton. Together, these results indicate an essential role for prdm1a in the development of the zebrafish craniofacial skeleton.


Asunto(s)
Región Branquial/embriología , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Morfogénesis/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Animales , Biomarcadores/metabolismo , Región Branquial/anatomía & histología , Cartílago/citología , Cartílago/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/metabolismo , Huesos Faciales/anomalías , Huesos Faciales/anatomía & histología , Huesos Faciales/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Transducción de Señal/fisiología , Cráneo/anomalías , Cráneo/anatomía & histología , Cráneo/embriología , Tretinoina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA