Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 47(11): 2798-2801, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648933

RESUMEN

The electro-optic effect is an important mechanism for actively tuning the refractive index of materials. This effect has various important applications in communication, switching, modulation, and nonlinear optics. This research measured the quadratic electro-optic coefficient for a graphene oxide (GO) film with ellipsometry spectroscopy. The results show that this coefficient is about three orders of magnitude greater than that of other materials. The GO film with its giant electro-optic Kerr coefficient can improve devices based on this effect. For example, it can decrease power consumption and the complexity of these devices due to the need for a lower electric field. In addition, birefringence is obtained of about Δn = 0.08 at 730 nm, which can lead to promising improvements in commercial devices, such as the reduction of working voltage below 10 V.

2.
Opt Lett ; 46(2): 206-209, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448989

RESUMEN

Manipulation of the nonlinear optical response of materials plays a significant role in photonics applications; however, it may be irreversible, untunable, and uncontrollable, which makes it difficult. In this Letter, we present a mechanical-hydrodynamical approach through a microchannel to tune the nonlinear absorption response of graphene oxide liquid crystals. In this material, the optical properties depend on the flake orientation. This feature has helped us to study empirically the dependency of the nonlinear absorption coefficients to external hydrodynamical force by employing the Z-scan technique. The experimental results show that increasing the flow rate in the microchannel enhances both linear and nonlinear absorption coefficients and, as a result, reduces the laser beam transmission through the sample. It has been observed that the percentage change in the nonlinear absorption coefficient of the sample is significant due to the flow rate.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1620-1631, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036164

RESUMEN

In this paper, we investigate the crossing statistics of speckle patterns formed in the Fresnel diffraction region by a laser beam scattering through a nanofluid. We extend zero-crossing statistics to assess the dynamical properties of the nanofluid. According to the joint probability density function of laser beam fluctuation and its time derivative, the theoretical frameworks for Gaussian and non-Gaussian regimes are revisited. We count the number of crossings not only at zero level but also for all available thresholds to determine the average speed of moving particles. Using a probabilistic framework in determining crossing statistics, a priori Gaussianity is not essentially considered; therefore, even in the presence of deviation from Gaussian fluctuation, this modified approach is capable of computing relevant quantities, such as mean value of speed, more precisely. Generalized total crossing, which represents the weighted summation of crossings for all thresholds to quantify small deviation from Gaussian statistics, is introduced. This criterion can also manipulate the contribution of noises and trends to infer reliable physical quantities. The characteristic time scale for having successive crossings at a given threshold is defined. In our experimental setup, we find that increasing sample temperature leads to more consistency between Gaussian and perturbative non-Gaussian predictions. The maximum number of crossings does not necessarily occur at mean level, indicating that we should take into account other levels in addition to zero level to achieve more accurate assessments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA