Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mycologia ; 116(4): 558-576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819956

RESUMEN

The inclusion of biological control in the integrated management of rice blast (Magnaporthe oryzae [Mo]) reduces pesticide application. Phanerochaete australis (Pha) has been shown to be a potential inducer of resistance to rice blast. Pha was isolated saprophytically from the rice phylloplane and studied for its interaction with Mo in the defense process of upland rice plants against the pathogen attack. Investigating the Pha × Mo interaction in a completely randomized design, the suppression of leaf blast and the epidemiological components of disease development were quantified in vivo, whereas the physiological and biochemical aspects, as defense enzymes and oxidative complex components, were evaluated in vitro during the induction of resistance. In the Pha × Mo interaction, it was found that seed treatment can significantly reduce disease severity by up to 93%, increase the photosynthetic apparatus, mobilize photoassimilates to the defense system, intensify defense enzyme and oxidant complex activities (chitinase [CHI], ß-1,3-glucanase [GLU], lipoxygenase [LOX], phenylalanine ammonia-lyase [PAL], poliphenoloxidase [PPO], peroxidase [POX], catalase [CAT], cuperoxide dismutase [SOD]), decrease phenolic compounds (TPCs), and increase photosynthetic pigment levels compared with the negative control (Mo). When treating the seed, we are referring to an induction process where there is no physical contact between the pathogens. The enzymes produced by the interaction between the microorganisms validate this process; thus, Pha acts as an inducer of resistance to upland rice plants challenged with Mo.


Asunto(s)
Oryza , Phanerochaete , Enfermedades de las Plantas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Phanerochaete/metabolismo , Resistencia a la Enfermedad , Hojas de la Planta/microbiología , Ascomicetos
2.
Environ Sci Pollut Res Int ; 26(19): 19705-19718, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31089999

RESUMEN

Leaf blast is the main rice disease in the world causing significant losses in productivity. Blast integrate management (BIM) requires the use of genetic resistance, cultural practices, and chemical control, although for sustainable BIM, the insertion of biological agents may be the fourth component for. The objective of this work was to test three formulations of Burkholderia pyrrocinia (BRM32113) previously selected and to verify the effectiveness in resistance induction and blast control in rice. Two experiments were carried out, in a completely randomized design with three replications, in the greenhouse (E1 and E2). E1 aimed to select the best treatment for suppressing leaf blast severity and activating plant defense mechanisms. It was composed of 8 treatments: (1) formulated 11+ B. pyrrocina × Magnaporthe oryzae; (2) formulated 17+ B. pyrrocina × M. oryzae; (3) formulated 32+ B. pyrrocina × M. oryzae; (4) formulated 11 × M. oryzae; (5) B. pyrrocinia 17 × M. oryzae; (6) formulated 32 × M. oryzae; (7) B. pyrrocina × M. oryzae; (8) M. oryzae; (9) control (water). E2 aimed to investigate the effect of the best treatments, for the promotion of plant growth and suppression of leaf blast by calculating AUDPC. It was composed of 6 treatments: (1) formulated 11+ B. pyrrocina × M. oryzae; (2) formulated 32+ B. pyrrocina × M. oryzae; (3) formulated 11 × M. oryzae; (4) formulated 32 × M. oryzae; (5) B. pyrrocina × M. oryzae; (6) water. And after, we did two assays aimed to localize this biological agent after application at seed, soil, and rice plant. In E1, formulated 11+ B. pyrrocinia and 32+ formulated and B. pyrrocina were the best, suppressing leaf blast by up to 97% and providing the significant increase of the enzymes ß-1,3-glucanase, chitinase, phenylalanine ammonia lyase, lipoxygenase, and salicylic acid at 24 h and 48 h after inoculation with M. oryzae. In E2, treatments formulated 11+ B. pyrrocinia, formulated 32+ B. pyrrocinia, and B. pyrrocina provided more significant increases in growth promotion and reduced area under disease progress curve. B. pyrrocinia was detected in the rice plant for 18 days, predominantly in the root system (internal and external). The use of B. pyrrocinia formulations based on sugarcane molasses and glycerol can be an essential strategy for sustainable management. Although all the benefits come from these sustainable formulations, the adoption by commercial biological segment depends on an established formulation process. It seems that all the results showed here by this research will be readily assimilated by startups of the organic segment.


Asunto(s)
Agentes de Control Biológico/farmacología , Burkholderia , Resistencia a la Enfermedad/efectos de los fármacos , Magnaporthe , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/aislamiento & purificación , Burkholderia/metabolismo , Magnaporthe/crecimiento & desarrollo , Oryza/enzimología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/microbiología , Distribución Aleatoria , Ácido Salicílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA