Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 408(7): 1855-61, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26862049

RESUMEN

A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 µm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.


Asunto(s)
Cumarinas/química , Colorantes Fluorescentes/química , Impresión Molecular/métodos , Polímeros/química , Moduladores Selectivos de los Receptores de Estrógeno/análisis , Tamoxifeno/análisis , Compuestos de Vinilo/química , Cumarinas/síntesis química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia/métodos , Compuestos de Vinilo/síntesis química
2.
Langmuir ; 21(16): 7170-9, 2005 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16042438

RESUMEN

Three series of new oligomeric cationic surfactants were synthesized. These amphiphiles are trimeric and tetrameric oligomeric quaternary ammonium chlorides, with spacer groups of different lengths separating the individual surfactant fragments. The properties of the compounds, such as Krafft temperatures, surface activity, micellization, viscosifying effects, foaming and solubilizing capacity, are studied. The influence of the degree of oligomerization and of the spacer group on the surfactant properties is discussed, in comparison with the analogous standard monomeric and dimeric ("gemini") surfactants. Typically, the evolution of the properties observed from standard to dimeric surfactants progresses with the trimers and tetramers, resulting for instance in extremely low critical micellization concentrations.

3.
J Am Chem Soc ; 124(14): 3787-93, 2002 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11929270

RESUMEN

Water-soluble block copolymers were prepared from the nonionic monomer N-isopropylacrylamide (NIPA) and the zwitterionic monomer 3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate (SPP) by sequential free radical polymerization via the RAFT process. Such block copolymers with two hydrophilic blocks exhibit double thermoresponsive behavior in water: the poly-NIPA block shows a lower critical solution temperature, whereas the poly-SPP block exhibits an upper critical solution temperature. Appropriate design of the block lengths leads to block copolymers which stay in solution in the full temperature range between 0 and 100 degrees C. Both blocks of these polymers dissolve in water at intermediate temperatures, whereas at high temperatures, the poly-NIPA block forms colloidal hydrophobic associates that are kept in solution by the poly-SPP block, and at low temperatures, the poly-SPP block forms colloidal polar aggregates that are kept in solution by the poly-NIPA block. In this way, colloidal aggregates which switch reversibly can be prepared in water, and without any additive, their "inside" to the "outside", and vice versa. The aggregates provide microdomains and surfaces of different character, which can be controlled by a simple thermal stimulus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA