Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 696(1-3): 12-7, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22975265

RESUMEN

Elevated homocysteine is a risk marker for several major human pathologies. Emerging evidence suggests that perturbations of folate/homocysteine metabolism can directly modify production of inflammatory mediators. Pemetrexed acts by inhibiting thymidylate synthetase (TYMS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). EA.hy 926 cells grown under low ("Lo") and high ("Hi") folate conditions were treated with pemetrexed. The concentrations of several intracellular folate derivatives were measured using LC-MRM/MS. Lo cells had lower total folate concentrations and a different distribution of the intracellular folate derivatives than Hi cells. Treatment with pemetrexed caused a decrease in individual folate analytes. Microarray analysis showed that several genes were significantly up or down-regulated in pemetrexed treated Lo cells. Several of the significantly up-regulated transcripts were inflammatory. Changes in transcript levels of selected targets, including C3, IL-8, and DHFR, were confirmed by quantitative RT-PCR. C3 and IL-8 transcript levels were increased in pemetrexed-treated Lo cells relative to Lo controls; DHFR transcript levels were decreased. In Lo cells, IL-8 and C3 protein concentrations were increased following pemetrexed treatment. Pemetrexed drug treatment was shown in this study to have effects that lead to an increase in pro-inflammatory mediators in Lo cells. No such changes were observed in Hi cells, suggesting that pemetrexed could not modify the inflammatory profile in the context of cellular folate sufficiency.


Asunto(s)
Antagonistas del Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Glutamatos/farmacología , Guanina/análogos & derivados , Inflamación/metabolismo , Línea Celular , Quimiocina CCL2/genética , Complemento C3/genética , Guanina/farmacología , Humanos , Interleucina-8/genética , Pemetrexed , Fenotipo , ARN Mensajero/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
2.
Free Radic Biol Med ; 53(3): 610-7, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22613262

RESUMEN

7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dGuo) is a useful biomarker of oxidative stress. However, its analysis can be challenging because 8-oxo-dGuo must be quantified in the presence of dGuo, without artifactual conversion to 8-oxo-dGuo. Urine is the ideal biological fluid for population studies, because it can be obtained noninvasively and it is less likely that artifactual oxidation of dGuo can occur because of the relatively low amounts that are present compared with hydrolyzed DNA. Stable isotope dilution liquid chromatography-selected reaction monitoring/mass spectrometry (LC-SRM/MS) with 8-oxo-[(15)N(5)]dGuo as internal standard provided the highest possible specificity for 8-oxo-dGuo analysis. Furthermore, artifact formation was determined by addition of [(13)C(10)(15)N(5)]dGuo and monitoring of its conversion to 8-oxo-[(13)C(10)(15)N(5)]dGuo during the analytical procedure. 8-Oxo-dGuo concentrations were normalized for interindividual differences in urine flow by analysis of creatinine using stable isotope dilution LC-SRM/MS. A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers compared with nonsmokers either using simple urinary concentrations or after normalization for creatinine excretion. The mean levels of 8-oxo-dGuo were 1.65ng/ml and the levels normalized to creatinine were 1.72µg/g creatinine. Therefore, stable isotope dilution LC-SRM/MS analysis of urinary 8-oxo-dGuo complements urinary isoprostane (isoP) analysis for assessing tobacco-smoking-induced oxidative stress. This method will be particularly useful for studies that employ polyunsaturated fatty acids, in which a reduction in arachidonic acid precursor could confound isoP measurements.


Asunto(s)
Desoxiguanosina/análogos & derivados , Estrés Oxidativo , Fumar/orina , 8-Hidroxi-2'-Desoxicoguanosina , Biomarcadores/orina , Calibración , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión/normas , Daño del ADN , Desoxiguanosina/orina , Humanos , Límite de Detección , Espectrometría de Masas/normas , Estándares de Referencia
3.
Chem Res Toxicol ; 24(12): 2227-36, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-21916491

RESUMEN

Previously, we established that 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (HETE) was a significant cyclooxygenase (COX)-2-derived arachidonic acid (AA) metabolite in epithelial cells. Stable isotope dilution chiral liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization (ECAPCI)/mass spectrometry (MS) was used to quantify COX-2-derived eicosanoids in the human colorectal adenocarcinoma (LoVo) epithelial cell line, which expresses both COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 11(R)-HETE secretion reached peak concentrations within minutes after AA addition before rapidly diminishing, suggesting further metabolism had occurred. Surprisingly, recombinant 15-PGDH, which is normally specific for oxidation of eicosanoid 15(S)-hydroxyl groups, was found to convert 11(R)-HETE to 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (ETE). Furthermore, LoVo cell lysates converted 11(R)-HETE to 11-oxo-ETE and inhibition of 15-PGDH with 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) (50 µM) significantly suppressed endogenous 11-oxo-ETE production with a corresponding increase in 11(R)-HETE. These data confirmed COX-2 and 15-PGDH as enzymes responsible for 11-oxo-ETE biosynthesis. Finally, addition of AA to the LoVo cells resulted in rapid secretion of 11-oxo-ETE into the media, reaching peak levels within 20 min of starting the incubation. This was followed by a sharp decrease in 11-oxo-ETE levels. Glutathione (GSH) S-transferase (GST) was found to metabolize 11-oxo-ETE to the 11-oxo-ETE-GSH (OEG)-adduct in LoVo cells, as confirmed by LC-MS/MS analysis. Bromodeoxyuridine (BrdU)-based cell proliferation assays in human umbilical vein endothelial cells (HUVECs) revealed that the half-maximal inhibitory concentration (IC(50)) of 11-oxo-ETE for inhibition of HUVEC proliferation was 2.1 µM. These results show that 11-oxo-ETE is a novel COX-2/15-PGDH-derived eicosanoid, which inhibits endothelial cell proliferation with a potency that is similar to that observed for 15d-PGJ(2).


Asunto(s)
Antineoplásicos/química , Antineoplásicos/toxicidad , Ácidos Araquidónicos/biosíntesis , Ciclooxigenasa 2/metabolismo , Eicosanoides/química , Eicosanoides/toxicidad , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Antineoplásicos/metabolismo , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/química , Ácidos Araquidónicos/toxicidad , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Eicosanoides/biosíntesis , Glutatión Transferasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/genética , Espectrometría de Masas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
4.
J Biomech ; 44(4): 683-93, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21092968

RESUMEN

An optimization-based formulation and solution method are presented to predict asymmetric human gait for a large-scale skeletal model. Predictive dynamics approach is used in which both the joint angles and joint torques are treated as unknowns in the equations of motion. For the optimization formulation, the joint angle profiles are treated as the primary unknowns, and velocities and accelerations are calculated using them. In numerical implementation, the joint angle profiles are discretized using the B-spline interpolation. An algorithm is presented to inversely calculate the joint torques and the ground reaction forces. The sum of the joint-torques squared, called the dynamic effort, is minimized as the human performance measure. Constraints are imposed on the joint strengths (torques) and joint ranges of motion along with other physical constraints. The formulation is validated by simulating a symmetric gait and comparing the results with the experimental data. Then asymmetric gait motion is simulated, where the left and right step lengths are different. The kinematics and kinetics results from the simulation are presented and discussed. Predicted ground reaction forces are explained by using the inverted pendulum model. Predicted kinematics and kinetics have trends that are similar to those reported in the literature. Potential practical applications of the formulation and the solution approach are discussed.


Asunto(s)
Algoritmos , Marcha/fisiología , Articulaciones/fisiología , Locomoción/fisiología , Modelos Biológicos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Rango del Movimiento Articular/fisiología , Simulación por Computador , Humanos , Torque
5.
J Labelled Comp Radiopharm ; 54(5): 247-251, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25152561

RESUMEN

Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,ß-unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

6.
J Biomech Eng ; 130(3): 031002, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18532851

RESUMEN

Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.


Asunto(s)
Modelos Biológicos , Caminata/fisiología , Simulación por Computador , Retroalimentación Psicológica , Análisis de Elementos Finitos , Pie/fisiología , Fricción , Marcha/fisiología , Sensación de Gravedad , Humanos , Articulaciones/fisiología , Matemática , Movimiento/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Dinámicas no Lineales , Equilibrio Postural/fisiología , Postura/fisiología , Factores de Tiempo , Estudios de Tiempo y Movimiento , Torque
7.
Free Radic Biol Med ; 39(9): 1162-76, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16214032

RESUMEN

Endothelial dysfunction is considered to be the earliest event in atherogenesis. Oxidative stress, inflammation, and apoptosis play critical roles in its progression and onset. Lipid peroxidation, which occurs during oxidative stress, results in the formation of lipid hydroperoxide-derived bifunctional electrophiles such as 4-hydroxy-2(E)-nonenal that induce apoptosis. In this study, recently identified lipid hydroperoxide-derived bifunctional electrophiles 4-oxo-2(E)-nonenal (ONE; 5-30 microm) and 4,5-epoxy-2(E)-decenal (EDE; 10-20 microM) were shown to cause a dose- and time-dependent apoptosis in EA.hy 926 endothelial cells. This was manifest by morphological changes, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Bifunctional electrophiles caused cytochrome c release from mitochondria into the cytosol, implicating a mitochondrial pathway of apoptosis in the endothelial cells. The novel carboxylate-containing lipid hydroperoxide-derived bifunctional electrophile 9,12-dioxo-10(E)-dodecenoic acid was inactive because it could not translocate across the plasma membrane. However, its less polar methyl ester derivative (2-10 microM) was the most potent inducer of apoptosis of any bifunctional electrophile that has been tested. An acute decrease in intracellular glutathione (GSH) preceded the onset of apoptosis in bifunctional electrophile-treated cells. The ability of ONE and EDE to deplete GSH was directly correlated with their predicted reactivity toward nucleophilic amino acids. Liquid chromatography/mass spectrometry methodology was developed in order to examine the intracellular and extracellular concentrations of bifunctional electrophile-derived GSH adducts. Relative intracellular/extracellular ratios of the GSH adducts were identical with the rank order of potency for inducing caspase 3 activation. This suggests that there may be a role for the bifunctional electrophile-derived GSH adducts in the apoptotic response. N-Acetylcysteine rescued bifunctional electrophile-treated cells from apoptosis, whereas the GSH biosynthesis inhibitor d,l-buthionine-(R,S)-sulfoximine sensitized the cells to apoptosis. These data suggest that lipid hydroperoxide-derived bifunctional electrophiles may play an important role in cardiovascular pathology through their ability to induce endothelial cell apoptosis.


Asunto(s)
Aldehídos/farmacología , Apoptosis , Células Endoteliales/efectos de los fármacos , Compuestos Epoxi/farmacología , Peróxidos Lipídicos/química , Aldehídos/química , Caspasa 3 , Caspasas/metabolismo , Citocromos c/metabolismo , Células Endoteliales/metabolismo , Activación Enzimática , Compuestos Epoxi/química , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/farmacología , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , Peróxidos Lipídicos/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo
8.
J Mass Spectrom ; 40(5): 661-8, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15739161

RESUMEN

Intracellular Fe(II), which is up-regulated during oxidative stress and during iron overload, induces the formation of a hydroxyl radical by Fenton chemistry. The hydroxyl radical can convert the prototypic omega-6 polyunsaturated fatty acid, linoleic acid, to 13-hydroperoxy-9,11-(Z,E)-octadecadienoic acid (13-HPODE). Cyclooxygenases can also convert linoleic acid to 13(S)-HPODE during oxidative stress. Subsequent Fe(II)-mediated decomposition to protein- and DNA-reactive bifunctional electrophiles was examined by normal-phase liquid chromatography (LC)/atmospheric pressure chemical ionization (APCI)/mass spectrometry. The potential individual bifunctional electrophiles trans-4,5-epoxy-2(E)-decenal (EDE), cis-EDE, 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) exhibited protonated molecular ions at m/z 169, 169, 155 and 157, respectively. The MH(+) ion at m/z 173 for 4-hydroperoxy-2(E)-nonenal (HPNE) was very weak with an ion corresponding to the loss of OH at m/z 156 as the major ion in the APCI mass spectrum. The bifunctional electrophiles were all separated under normal-phase LC conditions. Interestingly, ions corresponding to ONE and HNE were detected at the same retention time as HPNE, suggesting that it decomposed in the source of the mass spectrometer to ONE and HNE. All five bifunctional electrophiles were formed when 13-HPODE was treated with 50 microM Fe(II). At this concentration of Fe(II), the addition of vitamin C resulted in increased bifunctional electrophile formation. At higher concentrations of Fe(II) (500 microM to 2 mM), no HPNE was detected and there was no additive effect of vitamin C. Additional experiments with synthetic HPNE revealed that it was quantitatively converted to a mixture of ONE and HNE by Fe(II). The HNE is thought to arise from a one-electron reduction of an alkoxy radical derived from HPNE. In contrast, ONE can arise through an alpha-cleavage of the HPNE-derived alkoxy radical or by direct dehydration of HPNE.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Ácido Linoleico/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Cromatografía de Gases y Espectrometría de Masas , Peroxidación de Lípido , Estructura Molecular
9.
Chem Res Toxicol ; 18(3): 566-78, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15777096

RESUMEN

It has been proposed that 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid [13(S)-HPODE]-mediated formation of 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal arises from a Hock rearrangement. This suggested that a 4-oxo-2(E)-nonenal-related molecule, 9,12-dioxo-10(E)-dodecenoic acid (DODE), could also result from the intermediate formation of 9-hydroperoxy-12-oxo-10(E)-dodecenoic acid. A recent report has described the formation of DODE-derived etheno adducts when 13(S)-HPODE was allowed to decompose in the presence of 2'-deoxynucleosides or DNA. However, the regioselectivity of lipid hydroperoxide-derived DODE addition to 2'-deoxyguanosine (dGuo) or other 2'-deoxynucleosides was not determined. The structure of carboxynonanone-etheno-dGuo formed from vitamin C-mediated 13(S)-HPODE decomposition has now been established by a combination of 1H and 13C NMR spectroscopy studies of its bis-methylated derivative. The site of dGuo methylation was first established as being at N-5 rather than at O-9 from NMR analysis of a methyl derivative of the model compound, heptanone-etheno-dGuo. (1)H,(13)C 2D heteronuclear multiple bond correlations were then used to establish unequivocally that the bis-methyl derivative of carboxynonanone-etheno-dGuo was 3-(2'-deoxy-beta-d-erythropentafuranosyl)imidazo-7-(9' '-carboxymethylnona-2' '-one)-9-oxo-5-N-methyl[1,2-a]purine rather than its 6-(9' '-carboxymethylnona-2"-one)-9-oxo-5-N-methyl[1,2-a]purine regioisomer. Therefore, etheno adduct formation occurred by initial nucleophilic attack of the exocyclic N(2) amino group of dGuo at the C-12 aldehyde of DODE to form an unstable carbinolamine intermediate. This was followed by intramolecular Michael addition of the pyrimidine N1 of dGuo to C-11 of the resulting alpha,beta-unsaturated ketone. Subsequent dehydration gave 3-(2'-deoxy-beta-d-erythropentafuranosyl)imidazo-7-(9' '-carboxynona-2' '-one)-9-oxo-[1,2-a]purine (carboxynonanone-etheno-dGuo). An efficient synthesis of DODE was developed starting from readily available 1,8-octanediol using a furan homologation procedure. This synthetic method allowed multigram quantities of DODE to be readily prepared. Synthetic DODE when reacted with dGuo gave carboxynonanone-etheno-dGuo that was identical with that derived from vitamin C-mediated 13(S)-HPODE decomposition in the presence of dGuo.


Asunto(s)
Aductos de ADN/síntesis química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Ácidos Grasos Monoinsaturados/química , Peroxidación de Lípido , Desoxiguanosina/síntesis química
10.
Chem Res Toxicol ; 18(3): 599-610, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15777099

RESUMEN

Analysis of products from the reaction between 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid and 2'-deoxyguanosine in the presence of FeII, FeIII, or vitamin C by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry revealed the presence of four DNA adducts. Surprisingly, adducts I and II had mass spectral characteristics identical to those for 1,N2-etheno-2'-deoxyguanosine and heptanone-1,N2-etheno-2'-deoxyguanosine. These adducts have previously been shown to arise from the homolytic decomposition of 13(S)-hydroperoxy-9,11-(Z,E)-octadecadienoic acid. It appears that under the reaction conditions, 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid was subjected to a previously unknown peroxidation reaction to give a bis-hydroperoxide intermediate that underwent a Hock rearrangement to produce 3(Z)-nonenal from the omega-terminus. The 3(Z)-nonenal was then converted to 4-hydroperoxy-2-nonenal, a precursor to the formation of 4-oxo-2-nonenal. 4-Oxo-2-nonenal forms heptanone-1,N2-etheno-adducts with 2'-deoxyguanosine, whereas 4-hydroperoxy-2-nonenal forms 1,N2-etheno-2'-deoxyguanosine. Two novel carboxylate adducts were also identified. The structure of the more abundant adduct (III) was characterized as its methyl ester derivative by NMR spectroscopy as 3-(2'-deoxy-beta-D-erythropentafuranosyl)imidazo-7-(5' '-carboxypenta-2' '-one)-9-oxo[1,2-alpha]purine (5-carboxy-2-pentanone-1,N2-etheno-2'-deoxyguanosine). This etheno adduct was formed by the reaction of 2'-deoxyguanosine with 5,8-dioxo-6(E)-octenoic acid. The bifunctional electrophile is proposed to arise from the alpha-terminus during the Hock rearrangement of bis-hydroperoxide derived from 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid. 5-Carboxy-2-pentanone-1,N2-etheno-2'-deoxyguanosine may serve as a biomarker of 5-lipoxygenase-mediated oxidative stress. The less abundant carboxylate adduct IV arose from a quite different pathway and was tentatively characterized as 6-carboxy-3-hydroxy-1-hexene-1,N2-etheno-2'-deoxyguanosine.


Asunto(s)
Aductos de ADN/síntesis química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Leucotrienos/química , Desoxiguanosina/síntesis química , Espectrometría de Masa por Ionización de Electrospray
11.
J Biol Chem ; 278(43): 42098-105, 2003 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-12930824

RESUMEN

Previous studies have established that 4-hydroxy-2-nonenal is a lipid hydroperoxide-derived aldehydic bifunctional electrophile that reacts with DNA and proteins. However, it has now been recognized that 4-oxo-2-nonenal is also a major product of lipid hydroperoxide decomposition. Furthermore, 4-oxo-2-nonenal is more reactive than 4-hydroxy-2-nonenal toward the DNA-bases 2'-deoxyguanosine, 2'-deoxyadenosine, and 2'-deoxycytidine and proteins. The formation of 4-oxo-2-nonenal can be induced through vitamin C-mediated or transition metal ion-mediated homolytic decomposition of polyunsaturated omega-3 lipid hydroperoxides such as 13(S)-hydroperoxyoctadecadienoic acid. We have discovered that synthetic 4-oxo-nonenal or 4-oxo-2-nonenal-generated from 13(S)-hydroperoxyoctadecadienoic acid recognizes the specific amino acid motifs of His75, Ala76, and Lys77 in bovine histone H4. Reaction of the histidine and lysine residues with 4-oxo-2-nonenal results in the formation of a novel cyclic structure within the protein. The cyclic structure incorporates the histidine imidazole ring and a newly formed pyrrole derived from the lysine. The cyclic imidazole-pyrrole derivative that is formed from the small Nalpha-acetyl-His-Ala-Lys peptide exists as a mixture of two atropisomers that inter-convert upon heating. Such lipid hydroperoxide-derived modifications could potentially modulate transcriptional activation in vivo. Furthermore, the ability to synthesize cyclic peptides using 4-oxo-2-nonenal will facilitate the preparation of novel structural analogs with potential biological activity.


Asunto(s)
Aldehídos/química , Histonas/química , Peróxidos Lipídicos/química , Secuencia de Aminoácidos , Animales , Isótopos de Carbono , Bovinos , Ciclización , Deuterio , Histidina/química , Lisina/química , Péptidos Cíclicos/síntesis química , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA