Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(1): 584-594, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35492523

RESUMEN

Ultra-fast thermal annealing of semiconductor materials using a laser can be revolutionary for short processing times and low manufacturing costs. Here we investigate Cu-In-Se thin films as precursors for CuInSe2 semiconductor absorber layers via laser annealing. The reaction mechanism of laser annealed metal stacks is revealed by measuring ex situ X-ray diffractograms, Raman spectra and composition. It is shown that the formation of CuInSe2 occurs via the formation of Cu x Se/In x Se y binary phases as in conventional annealing routes, despite the entirely different annealing time scale. Pre-alloying the Cu and In metals prior to laser annealing significantly enhances the selenisation reaction rate. Laser annealing for six seconds approaches a near phase-pure material, which exhibits similar crystalline quality to the reference material annealed for ninety minutes in a tube furnace. The estimated quasi Fermi level splitting deficit for the laser annealed material is only 60 meV lower than the reference sample, which implies a high optoelectronic quality.

2.
ACS Appl Mater Interfaces ; 8(19): 11893-7, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27135679

RESUMEN

Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA