Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
World J Gastrointest Pharmacol Ther ; 6(4): 213-22, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26558155

RESUMEN

AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is the first-ever study reporting the therapeutic utility of GC-C agonists as a new class of orally delivered and mucosally active drug candidates for the treatment of inflammatory bowel diseases.

2.
Int J Mol Sci ; 16(2): 2971-3016, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25642755

RESUMEN

Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.


Asunto(s)
ADN/metabolismo , Gases em Plasma , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Humanos , Nucleósidos/química , Gases em Plasma/toxicidad , Especies de Nitrógeno Reactivo/química , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
3.
J Surg Res ; 179(1): e1-e12, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22480830

RESUMEN

Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (FE-DBD) nonthermal plasma is electrically safe to apply to living organisms for short periods. We investigated the effects of FE-DBD plasma on Yorkshire pigs on intact and wounded skin immediately after treatment or 24h posttreatment. Macroscopic or microscopic histological changes were identified using histological and immunohistochemical techniques. The changes were classified into four groups for intact skin: normal features, minimal changes or congestive changes, epidermal layer damage, and full burn and into three groups for wounded skin: normal, clot or scab, and full burn-like features. Immunohistochemical staining for laminin layer integrity showed compromise over time. A marker for double-stranded DNA breaks, γ-H2AX, increased over plasma-exposure time. These findings identified a threshold for plasma exposure of up to 900s at low power and <120s at high power. Nonthermal FE-DBD plasma can be considered safe for future studies of external use under these threshold conditions for evaluation of sterilization, coagulation, and wound healing.


Asunto(s)
Gases em Plasma/uso terapéutico , Piel/fisiopatología , Heridas Penetrantes/fisiopatología , Heridas Penetrantes/terapia , Animales , Femenino , Histonas/metabolismo , Laminina/metabolismo , Modelos Animales , Proyectos Piloto , Piel/metabolismo , Porcinos , Factores de Tiempo , Resultado del Tratamiento , Cicatrización de Heridas/fisiología , Heridas Penetrantes/metabolismo
4.
J R Soc Interface ; 9(66): 147-57, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21653568

RESUMEN

Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.


Asunto(s)
Neovascularización Fisiológica/efectos de los fármacos , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Depuradores de Radicales Libres/farmacología , Humanos , Proteínas Recombinantes/farmacología , Porcinos , Cicatrización de Heridas
5.
Ann Biomed Eng ; 39(2): 674-87, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21046465

RESUMEN

Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p < 0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm(2). TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p < 0.001) at a dose of 15 J/cm(2). Pre-treatment with N-acetyl-L: -cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm(2). Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies.


Asunto(s)
Apoptosis/efectos de los fármacos , Melanoma/patología , Melanoma/fisiopatología , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA