Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxicon ; 216: 132-138, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35850256

RESUMEN

Sepsis is a syndrome of physiological and biochemical abnormalities induced by an infection that represents a major public health concern. It involves the early activation of inflammatory responses. Crotoxin (CTX), the major toxin of the South American rattlesnake Crotalus durissus terrificus venom, presents longstanding anti-inflammatory properties. Since immune system modulation may be a strategic target in sepsis management, and macrophages' functional and secretory activities are related to the disease's progression, we evaluated the effects of CTX on macrophages from septic animals. Balb/c male mice submitted to cecal ligation and puncture (CLP) were treated with CTX (0.9 µg/animal, subcutaneously) 1 h after the procedure and euthanized after 6 h. We used plasma samples to quantify circulating cytokines and eicosanoids. Bone marrow differentiated macrophages (BMDM) were used to evaluate the CTX effect on macrophages' functions. Our data show that CTX administration increased the survival rate of the animals from 40% to 80%. Septic mice presented lower plasma concentrations of IL-6 and TNF-α after CTX treatment, and higher concentrations of LXA4, PGE2, and IL-1ß. No effect was observed in IL-10, IFN-γ, and RD1 concentrations. BMDM from septic mice treated with CTX presented decreased capacity of E. coli phagocytosis, but sustained NO and H2O2 production. We also observed higher IL-6 concentration in the culture medium of BMDM from septic mice, and CTX induced a significant reduction. CTX treatment increased IL-10 production by macrophages as well. Our data show that the protective effect of CTX in sepsis mortality involves modulation of macrophage functions and inflammatory mediators' production.


Asunto(s)
Crotoxina , Sepsis , Animales , Crotalus , Crotoxina/farmacología , Escherichia coli , Peróxido de Hidrógeno/farmacología , Inflamación , Interleucina-10 , Interleucina-6 , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Sepsis/tratamiento farmacológico
2.
Toxicon, v. 216, p. 132-138, set. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4436

RESUMEN

Sepsis is a syndrome of physiological and biochemical abnormalities induced by an infection that represents a major public health concern. It involves the early activation of inflammatory responses. Crotoxin (CTX), the major toxin of the South American rattlesnake Crotalus durissus terrificus venom, presents longstanding anti-inflammatory properties. Since immune system modulation may be a strategic target in sepsis management, and macrophages' functional and secretory activities are related to the disease's progression, we evaluated the effects of CTX on macrophages from septic animals. Balb/c male mice submitted to cecal ligation and puncture (CLP) were treated with CTX (0.9 μg/animal, subcutaneously) 1 h after the procedure and euthanized after 6 h. We used plasma samples to quantify circulating cytokines and eicosanoids. Bone marrow differentiated macrophages (BMDM) were used to evaluate the CTX effect on macrophages' functions. Our data show that CTX administration increased the survival rate of the animals from 40% to 80%. Septic mice presented lower plasma concentrations of IL-6 and TNF-α after CTX treatment, and higher concentrations of LXA4, PGE2, and IL-1β. No effect was observed in IL-10, IFN-γ, and RD1 concentrations. BMDM from septic mice treated with CTX presented decreased capacity of E. coli phagocytosis, but sustained NO and H2O2 production. We also observed higher IL-6 concentration in the culture medium of BMDM from septic mice, and CTX induced a significant reduction. CTX treatment increased IL-10 production by macrophages as well. Our data show that the protective effect of CTX in sepsis mortality involves modulation of macrophage functions and inflammatory mediators’ production.

3.
Immunobiology ; 216(3): 302-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20817308

RESUMEN

Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-α, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-α, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-α, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Endotoxemia/inmunología , Inflamación/inmunología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Animales , Animales Modificados Genéticamente , Técnicas de Cocultivo , Técnicas de Inactivación de Genes , Interleucina-10/inmunología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos BALB C , Nitritos/inmunología , Cavidad Peritoneal , Cavidad Pleural/inmunología , Sepsis , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA