RESUMEN
Bocconia arborea S. Watson (Papaveraceae) is an abundant medicinal plant in the North of Morelos State, Mexico, which is used for the treatment of several diseases. The aim of current investigation was to isolate the compounds responsible of the relaxant effect shown by the active extracts. Thus, phytochemical bio-guided fractionation allowed the isolation of angoline (1), dihydrosanguinarine (2), bocconarborine A (3), oxisanguinarine (4), and oxychelerithrine (5) from dichloromethanic and methanolic extracts from the bark of Bocconia arborea (Papaveraceae). The relaxant study on aortic and tracheal rat rings of all benzophenanthridines indicates that 1 was the most active compound of the entire series investigated. Angoline (1) induces its relaxant effect by a concentration-dependent manner through the calcium channel blockade in both tissues.
RESUMEN
The aim of this work was to evaluate the vasorelaxant and antihypertensive effects of a standardized precipitate of the hydroalcoholic extract from Agastache mexicana (PPAm), comprising ursolic acid, oleanolic acid, acacetin, luteolin and tilianin, among others. In the ex vivo experiments, preincubation with L-NAME (nonspecific inhibitor of nitric oxide synthases) reduced the relaxation induced by PPAm; nevertheless, preincubation with indomethacin (nonspecific inhibitor of cyclooxygenases) did not generate any change in the vasorelaxation, and an opposed effect was observed to the contraction generated by CaCl2 addition. Oral administration of 100 mg/kg of PPAm induced a significant acute decrease in diastolic (DBP) and systolic (SBP) blood pressure in spontaneously hypertensive rats, without changes in heart rate. Additionally, PPAm showed a sustained antihypertensive subacute effect on both DBP and SBP for 10 days compared to the control group. On the other hand, human umbilical vein cells treated with 10 µg/mL of PPAm showed a significant reduction (p < 0.05) in intracellular adhesion molecule-1, compared to the control, but not on vascular cell adhesion molecule-1. In conclusion, PPAm induces a significant antihypertensive effect in acute- and subacute-period treatments, due to its direct vasorelaxant action on rat aortic rings through NO production and Ca2+ channel blockade.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Achillea millefolium L. (Asteraceae), known as yarrow (milenrama), is a plant used in Mexican traditional medicine for the treatment of hypertension, diabetes, and related diseases. AIM: To determine the vasorelaxant and antihypertensive effect of A. millefollium and to isolate the main bioactive antihypertensive agents. MATERIALS AND METHODS: Organic (hexane, dichloromethane and methanol) and hydro-alcohol (Ethanol-H2O: 70:30) extracts obtained from flowers, leaves and stems were evaluated on isolated aorta rat rings with and without endothelium to determine their vasorelaxant effect. Hexane extract from flowers (HEAmF) was studied to evaluate its antihypertensive effect on spontaneously hypertensive rats (SHR). From HEAmF, bioactive compounds were obtained by bio-guided phytochemical separation through chromatography. RESULTS: Organic extracts showed the best vasorelaxant activity. Hexane extract from flowers was the most potent and efficient ex vivo vasorelaxant agent, showing significant decrease of systolic and diastolic blood pressure in SHR (p < 0.05). Phytochemical separation of HEAmF yielded two epimeric sesquiterpene lactones: leucodin (1) and achillin (2), the major components of the extract. Both 1 and 2 showed similar vasorelaxant action ex vivo (p < 0.05), and their effects where modified by L-NAME (10 µM, nitric oxide synthase inhibitor), by ODQ (1 µM, soluble guanylyl cyclase inhibitor), and also relaxed the contraction induced by KCl (80 mM). Finally, 1 and 2 intragastric administration (50 mg/kg) decreased systolic and diastolic blood pressure in SHR. CONCLUSIONS: Achillea millefolium showed antihypertensive and vasorelaxant effects, due mainly to leucodin and achillin (epimers). Both compounds showed antihypertensive activity by vasorelaxation putatively by endothelium-dependent NO release and cGMP increase, as well as by calcium channels blockade.
Asunto(s)
Achillea/química , Antihipertensivos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Vasodilatadores/farmacología , Animales , Antihipertensivos/uso terapéutico , Aorta/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Simulación por Computador , Frecuencia Cardíaca/efectos de los fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Oxadiazoles/farmacología , Extractos Vegetales/uso terapéutico , Quinoxalinas/farmacología , Ratas Endogámicas SHR , Ratas Wistar , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/uso terapéutico , Vasodilatadores/uso terapéuticoRESUMEN
ETHNOPHARMACOLOGICAL IMPORTANCE: Achillea millefolium L. (Asteraceae) is used for the treatment of respiratory diseases, diabetes, and hypertension. AIM: to explore its tracheal relaxant properties and clarify its functional mechanism of action on smooth muscle cells, which allow us to propose it as a potential anti-asthmatic drug. MATERIAL AND METHODS: organic and hydro-alcoholic extracts from A. millefolium were obtained by macerations, then their relaxing effect on ex vivo isolated rat trachea rings was determined. Most active extract (hexanic extract, EHAm) was studied to determine its functional mechanism of action using synergic, antagonist and inhibitor agents related with the contraction/relaxation process of the smooth muscle. Also, EHAm was subjected to bio-guided fractionation by open-column chromatography (on silica gel) using cyclohexane-EtOAc (80:20) in an isocratic way to isolate main bioactive compounds. RESULTS: organic and hydro-alcoholic extracts showed relaxant effect in a concentration-response dependent manner, being EHAm the most active. The functional mechanism of action indicates that EHAm induced a non-competitive antagonism to the muscarinic receptors ; in addition, the NO/cGMP pathway is involved in the relaxation process of the tracheal smooth muscle. However, the most important mechanism of action showed by EHAm was related with the calcium channel blockade influx into the smooth muscle cells. On the other hand, epimeric sesquiterpene lactones leucodin (1) and achillin (2) were isolated and purified, which are responsible for the observed smooth muscle relaxant activity of the extract. CONCLUSION: hexanic extract of A. millefollium induced a significant relaxant effect on tracheal rat rings by calcium channel blockade and NO release.
Asunto(s)
Achillea/química , Bloqueadores de los Canales de Calcio/farmacología , Relajación Muscular/efectos de los fármacos , Extractos Vegetales/farmacología , Tráquea/efectos de los fármacos , Animales , Antiasmáticos/administración & dosificación , Antiasmáticos/aislamiento & purificación , Antiasmáticos/farmacología , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Tráquea/metabolismoRESUMEN
Agastache mexicana has gained importance during the last decade as a natural source of bioactive compounds, mainly due to the antidiabetic, antihyperlipidemic, and vasorelaxant effects derived from its flavonoids, particularly tilianin. The goal of this work was to evaluate the production of tilianin during the in-vitro process of morphogenesis leading to plant regeneration and to investigate the vasorelaxant activity of its methanolic extracts. The cultures were established from nodal segments and leaf explants, inoculated on Murashige and Skoog (MS) media supplemented with various concentrations of benzyl aminopurine (BAP) alone or in combination with 2,4-Dichlorophenoxyacetic acid (2,4-D). Callus inductions were obtained in all treatments from both types of explants, but the presence of auxin was essential. Maximal shoot multiplication and elongation was achieved with 0.1 mg/l 2,4-D and 1.0 mg/l BAP from nodal- segment explants. Shoots were rooted in 75% MS medium and the plantlets were transferred to a greenhouse with 33% average survival. Analysis of tilianin production in methanolic extracts from calli (0.15-2.01 ± 0.06 mg/g dry weight), shoots (4.45 ± 0.01 mg/g DW), and whole plants (9.77 ± 0.02 mg/g DW) derived from in-vitro cultured nodal segments reveals that tilianin accumulation is associated with high cell differentiation and morphogenetic response to the plant-growth regulators. All of the extracts showed strong vasorelaxant activity, as compared to those of wild plant extracts. These results indicate that plant-tissue cultures of A. mexicana possess vast potential as a source of tilianin and other bioactive compounds.
Asunto(s)
Agastache/metabolismo , Flavonoides/farmacología , Glicósidos/farmacología , Vasodilatadores/farmacología , Agastache/fisiología , Flavonoides/análisis , Glicósidos/análisis , Extractos Vegetales , Reguladores del Crecimiento de las Plantas , Hojas de la Planta/químicaRESUMEN
ETHNOPHARMACOLOGICAL IMPORTANCE: Achillea millefolium L. (Asteraceae) is a perennial herb used in Mexican folk medicine for treatment of several pathologies, including inflammatory and spasmodic gastrointestinal disorders, hepatobiliary complaints, overactive cardiovascular, respiratory ailments and diabetes. AIM OF THE STUDY: To evaluate the potential antidiabetic effect in vivo and to establish the potential mode of action through in vitro approaches of Achillea millefolium. MATERIALS AND METHODS: The antidiabetic effect of hydroalcoholic extract of Achillea millefolium (HAEAm) was evaluated on the oral glucose tolerance tests, in normoglycemic and experimental Type 2 diabetic mice models. In addition, we evaluated the possible mode of action in in vitro assays to determine α-glucosidases inhibition, the insulin secretion and calcium mobilization in RINm5F cells and PPARγ and GLUT4 expression in 3T3-L1 cells. RESULTS: HAEAm showed significant glucose diminution on oral glucose tolerance test and in acute experimental Type 2 diabetic assay with respect to the control (p < 0.05). In addition, HAEAm promoted the α-glucosidases inhibition by 55% at 1mg/ml respect to control. On the other hand, HAEAm increased the PPARγ (five-times) and GLUT4 (two-fold) relative expression than control (p < 0.05). Finally, HAEAm significantly increased the insulin secretion and [Ca2+]i compared with control. CONCLUSION: The HAEAm possesses in vivo antidiabetic effect, having such effect through multitarget modes of action that involve antihyperglycemic (α-glucosidases inhibition), hypoglycemic (insulin secretion) and potential insulin sensitizer (PPARγ/GLUT4 overexpression) actions.