Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-137802

RESUMEN

The causative agent of the current pandemic and coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Understanding how SARS-CoV-2 enters and spreads within human organs is crucial for developing strategies to prevent viral dissemination. For many viruses, tissue tropism is determined by the availability of virus receptors on the surface of host cells2. Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as a host receptor, yet, their tropisms differ3-5. Here, we found that the cellular receptor neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, which was inhibited by a monoclonal blocking antibody against the extracellular b1b2 domain of NRP1. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial cells and in the epithelial cells facing the nasal cavity. Neuropathological analysis of human COVID-19 autopsies revealed SARS-CoV-2 infected NRP1-positive cells in the olfactory epithelium and bulb. In the olfactory bulb infection was detected particularly within NRP1-positive endothelial cells of small capillaries and medium-sized vessels. Studies in mice demonstrated, after intranasal application, NRP1-mediated transport of virus-sized particles into the central nervous system. Thus, NRP1 could explain the enhanced tropism and spreading of SARS-CoV-2.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-134114

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19, a coronavirus disease that has infected more than 6.6 million people and caused over 390,000 deaths worldwide1,2. The Spike (S) protein of the virus forms projections on the virion surface responsible for host cell attachment and penetration. This viral glycoprotein is synthesized as a precursor in infected cells and, to be active, must be cleaved to two associated polypeptides: S1 and S2(3,4). For SARS-CoV-2 the cleavage is catalysed by furin, a host cell protease, which cleaves the S protein precursor at a specific sequence motif that generates a polybasic Arg-Arg-Ala-Arg (RRAR) C-terminal sequence on S1. This sequence motif conforms to the C-end rule (CendR), which means that the C-terminal sequence may allow the protein to associate with cell surface neuropilin-1 (NRP1) and neuropilin-2 (NRP2) receptors5. Here we demonstrate using immunoprecipitation, site-specific mutagenesis, structural modelling, and antibody blockade that, in addition to engaging the known receptor ACE2, S1 can bind to NRP1 through the canonical CendR mechanism. This interaction enhances infection by SARS-CoV-2 in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection, and provides a therapeutic target for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA