Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(1): 010401, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39042790

RESUMEN

The highly complicated nature of far from equilibrium systems can lead to a complete breakdown of the physical intuition developed in equilibrium. A famous example of this is the Mpemba effect, which states that nonequilibrium states may relax faster when they are further from equilibrium or, put another way, hot water can freeze faster than warm water. Despite possessing a storied history, the precise criteria and mechanisms underpinning this phenomenon are still not known. Here, we study a quantum version of the Mpemba effect that takes place in closed many-body systems with a U(1) conserved charge: in certain cases a more asymmetric initial configuration relaxes and restores the symmetry faster than a more symmetric one. In contrast to the classical case, we establish the criteria for this to occur in arbitrary integrable quantum systems using the recently introduced entanglement asymmetry. We describe the quantum Mpemba effect in such systems and relate the properties of the initial state, specifically its charge fluctuations, to the criteria for its occurrence. These criteria are expounded using exact analytic and numerical techniques in several examples, a free fermion model, the Rule 54 cellular automaton, and the Lieb-Liniger model.

2.
Phys Rev Lett ; 133(1): 010402, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39042798

RESUMEN

The nonequilibrium physics of many-body quantum systems harbors various unconventional phenomena. In this Letter, we experimentally investigate one of the most puzzling of these phenomena-the quantum Mpemba effect, where a tilted ferromagnet restores its symmetry more rapidly when it is farther from the symmetric state compared to when it is closer. We present the first experimental evidence of the occurrence of this effect in a trapped-ion quantum simulator. The symmetry breaking and restoration are monitored through entanglement asymmetry, probed via randomized measurements, and postprocessed using the classical shadows technique. Our findings are further substantiated by measuring the Frobenius distance between the experimental state and the stationary thermal symmetric theoretical state, offering direct evidence of subsystem thermalization.

3.
Nat Commun ; 14(1): 2036, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041181

RESUMEN

Symmetry and symmetry breaking are two pillars of modern quantum physics. Still, quantifying how much a symmetry is broken is an issue that has received little attention. In extended quantum systems, this problem is intrinsically bound to the subsystem of interest. Hence, in this work, we borrow methods from the theory of entanglement in many-body quantum systems to introduce a subsystem measure of symmetry breaking that we dub entanglement asymmetry. As a prototypical illustration, we study the entanglement asymmetry in a quantum quench of a spin chain in which an initially broken global U(1) symmetry is restored dynamically. We adapt the quasiparticle picture for entanglement evolution to the analytic determination of the entanglement asymmetry. We find, expectedly, that larger is the subsystem, slower is the restoration, but also the counterintuitive result that more the symmetry is initially broken, faster it is restored, a sort of quantum Mpemba effect, a phenomenon that we show to occur in a large variety of systems.

4.
Phys Rev E ; 103(4-1): 042107, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005916

RESUMEN

We calculate exactly cumulant generating functions (full counting statistics) for the transverse, staggered magnetization, and the domain walls at zero temperature for a finite interval of the XY spin chain. In particular, we also derive a universal interpolation formula in the scaling limit for the full counting statistics of the transverse magnetization and the domain walls which is based on the solution of a Painlevé V equation. By further determining subleading corrections in a large interval asymptotics, we are able to test the applicability of conformal field theory predictions at criticality. As a by-product, we also obtain exact results for the probability of formation of ferromagnetic and antiferromagnetic domains in both the σ^{z} and σ^{x} basis in the ground state. The analysis hinges upon asymptotic expansions of block Toeplitz determinants, for which we formulate and check numerically a different conjecture.

5.
Phys Rev E ; 97(2-1): 022133, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29548114

RESUMEN

We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA