RESUMEN
Avian eggshells harbour microbes shortly after laying, and under appropriate ambient conditions they can multiply rapidly, penetrate through shell pores, infect egg contents and cause embryo mortality. We experimentally examined how incubation affects bacterial processes on the eggshells of pearl-eyed thrashers Margarops fuscatus nesting in tropical montane and lowland forests in Puerto Rico. Bacteria and fungi grew rapidly on shells of newly laid, unincubated eggs exposed to ambient conditions, but declined to low levels on shells of eggs incubated by thrashers. Divergence in bacterial growth between incubated and exposed eggs was more marked at the montane forest than at the lowland site. Pathogenic microorganisms became increasingly dominant on shells of exposed eggs, but these groups were relatively rare on incubated eggs, where more benign, less invasive groups prevailed. Some incubation during laying may be necessary to decrease the probability of trans-shell infection by reducing the growth of harmful bacteria and fungi on eggshells, although it may increase hatching asynchrony and the likelihood of brood reduction.
RESUMEN
Many birds initiate incubation before clutch completion, which results in asynchronous hatching. The ensuing within-brood size disparity often places later-hatched nestlings at a developmental disadvantage, but the functional significance of the timing of the onset of incubation is poorly understood. Early incubation may serve to maintain the viability of early-laid eggs, which declines over time owing to the putative effects of ambient temperature. An unexplored risk to egg viability is trans-shell infection by micro-organisms. We experimentally investigated the rate and magnitude of microbial trans-shell infection of the egg, and the relative effects of ambient temperature and micro-organisms on hatching success. We show that infection of egg contents is prevalent and occurs within the time required to lay a clutch. The probability of infection depends on the climatic conditions, the exposure period and the phylogenetic composition of the eggshell microbiota. We also demonstrate that microbial infection and ambient temperature act independently to reduce egg viability considerably. Our results suggest that these two factors could affect the onset of avian incubation in a wide range of environments.