Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofilm ; 7: 100186, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38495771

RESUMEN

Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces. Specifically, this paper describes how UEGs are enabled by innovatively modifying the surfaces of the glass with light scattering particles. Modification of glass surface with silica nanoparticles at a concentration 26.5 µg/cm2 resulted in over ten-fold increase in UV irradiance, while maintaining satisfactory visible and IR transparency metrics of over 99 %. The UEG reduced visible biological growth by 98 % and resulted in a decrease of 1.79 log in detected colony forming units when compared to the control during a 20 day submersion at Port Canaveral, Florida, United States. These findings serve as strong evidence that UV emitting glass should be explored as a promising approach for biofilm inhibition on transparent surfaces.

2.
Environ Res ; 217: 114951, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436555

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are common contaminants ubiquitously present in various waste products such as biosolids (e.g. wastewater sludges), oil spill residues (e.g. tarballs), road asphalts, and combustion byproducts. In this study, the photodegradation of PAHs is investigated under natural sunlight (cloudy and sunny/clear weather conditions), and using two types of artificial LED light sources. This is the first study to investigate the relative efficiency of low-cost LED light sources for conducting laboratory-scale PAH photodegradation experiments and directly comparing the results against those obtained using natural sunlight. Two types of LED light sources are investigated in this study: a light source with a full-spectrum range (380 nm-780 nm) that can cover the broad wavelength range of solar light reaching the Earth's surface, and a light source with a UV-A range (365 nm) that covers the UV range of the solar spectrum reaching the Earth's surface. The results show that the degradation of high molecular weight (HMW) PAHs is primarily due to photodegradation, and other lighter PAHs are degraded by both photodegradation and evaporation processes. HMW PAH photodegradation reactions follow the first-order degradation kinetics. The degradation rate constants of different PAHs are used to compare the relative efficiency of the light sources. The data show that the full-spectrum LED induced PAH photodegradation rates are similar to the natural sunlight induced rates. Furthermore, when the values of the rate constants are normalized to respective irradiance levels, the normalized rates for HMW PAH photodegradation under both full-spectrum LED light and natural sunlight are almost identical. However, the normalized photodegradation rate constants of HMW PAHs under the UV-A LED light are about two to three orders of magnitude higher than the sunlight as well as the full-spectrum-LED values. Therefore, the UV-A LED light is the optimal low-cost light source for studying PAH photodegradation processes under laboratory conditions.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/química , Fotólisis , Luz Solar , Rayos Ultravioleta , Cinética
3.
Sci Total Environ ; 791: 148056, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119781

RESUMEN

The long-term fate of three groups of petroleum biomarker compounds (terpanes, steranes, and triaromatic steranes) was investigated in the Deepwater Horizon (DWH) oil spill residues collected from Alabama (USA) beaches over the past 10 years. This is the first study to investigate the long-term fate of these three groups of petroleum biomarkers in DWH oil spill samples over 10 years. We employed the highly recalcitrant C30 αß-hopane as an internal biomarker to quantify the degradation levels of different biomarker compounds, and also to estimate the overall weathering levels of DWH oil spill residues. The data show that four lower molecular weight tricyclic terpanes (TR21, TR22, TR23, and TR24), three lower molecular weight steranes (S21, S22, and C27), and all triaromatic steranes degraded over the 10-year study period. All other terpanes (including hopanes) and steranes remained recalcitrant. There have been contradicting literature data on the degradation levels of homohopanes, and this field study demonstrates that all the homohopanes remained recalcitrant after 10 years of natural weathering. Our data also show that despite some degradation, the relative diagnostic ratios of the biomarkers remained stable for all three groups of biomarkers over the 10-year period.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Biomarcadores , Monitoreo del Ambiente , Petróleo/análisis , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 735: 139516, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32492568

RESUMEN

Beaches of Ras Rakan Island, located off the northern tip of Qatar, are extensively contaminated by highly weathered tarmat deposits. The focus of this study is to determine the possible source of the contamination and complete a preliminary assessment of its potential environmental impacts. The field data collected at this site indicated that the tarmat residues contained highly weathered, black, asphalt-like material and the contamination problem was widespread. Based on these field observations, the following two hypotheses were formulated: (1) the tarmats must have formed from the residual oil deposited by a relatively large, regional-scale oil spill event, and (2) the oil spill must be relatively old. As part of this study, we collected tarmat residues from several beaches located along the northern region of Qatar Peninsula. We found the hopane fingerprints of these tarmat samples were identical to the fingerprints of the samples collected from Ras Rakan Island. These results together with our physical field observational data validated our hypothesis that the oil spill should have been a regional-scale event. Furthermore, we compared the measured hopane fingerprints of our field samples with fingerprints of reference crude oils from Qatar, Saudi Arabia, and Basrah (located close to Kuwait border), and with the literature-derived hopane fingerprints of Kuwaiti and Iranian crude oils. This analysis indicated that the hopane fingerprints of the tarmat samples closely matched the Kuwaiti and Basrah crude oil fingerprints. Since there were no known oil spills of Basrah crude in this region, the highly weathered, asphalt-looking tarmats should have most likely formed from the 1991 Gulf War oil spill, an old oil spill. The concentrations of parent and alkylated PAHs in the tarmat samples were also quantified to provide a preliminary assessment of potential environmental risks posed by these tarmats to Qatar's coastal ecosystem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA