Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1383135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045600

RESUMEN

Within the family Fabaceae, the genus Glycine is composed of two subgenera annuals (2n=40) and perennials. This life strategy transition may have differentially affected the evolution of various gene families. Its cultivated species G. max has high level of susceptibility to major pathogens including viruses, bacteria and fungi. Understanding nucleotide-binding domain leucine-rich repeat (NLR) genes evolution in soybean is of paramount importance due to their central role in plant immunity and their potential in improving disease resistance in soybean cultivars. In this study, we investigated the significance of this annual-perennial transition on the macroevolution of NLR genes in the genus Glycine. Our results reveal a remarkable distinction between annual species such as Glycine max and Glycine soja, which exhibit an expanded NLRome compared to perennial species (G. cyrtoloba, G. stenophita, G. dolichocarpa, G. falcata, G. syndetika, G. latifolia and G. tomentella). Our evolutionary timescale analysis pinpoints recent accelerated gene duplication events for this expansion, which occurred between 0.1 and 0.5 million years ago, driven predominantly by lineage-specific and terminal duplications. In contrast, perennials initially experienced significant contraction during the diploidisation phase following the Glycine-specific whole-genome duplication event (~10 million years ago). Despite the reduction in the NLRome, perennial lineages exhibit a unique and highly diversified repertoire of NLR genes with limited interspecies synteny. The investigation of gene gain and loss ratios revealed that this diversification resulted from the birth of novel genes following individual speciation events. Among perennials, G. latifolia, a well-known resistance resource, has the highest ratio of these novel genes in the tertiary gene pool. Our study suggests evolutionary mechanisms, including recombination and transposition, as potential drivers for the emergence of these novel genes. This study also provides evidence for the unbalanced expansion of the NLRome in the Dt subgenome compared with the At subgenome in the young allopolyploid G. dolichocarpa. To the best of our knowledge, this is the first study to investigate the effect of annuality and perenniality life transition on the evolution of NLR genes in the genus Glycine to identify its genomics resources for improving the resistance of soybean crop with global importance on the economy and food security.

2.
Genes (Basel) ; 14(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37107625

RESUMEN

Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.


Asunto(s)
Fabaceae , Trifolium , Trifolium/genética , Diploidia , Filogenia , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA