Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 31887, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27539662

RESUMEN

In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

2.
Science ; 331(6013): 64-7, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21212352

RESUMEN

Seismic discontinuities in Earth typically arise from structural, chemical, or temperature variations with increasing depth. The pressure-induced iron spin state transition in the lower mantle may influence seismic wave velocities by changing the elasticity of iron-bearing minerals, but no seismological evidence of an anomaly exists. Inelastic x-ray scattering measurements on (Mg(0.83)Fe(0.17))O-ferropericlase at pressures across the spin transition show effects limited to the only shear moduli of the elastic tensor. This explains the absence of deviation in the aggregate seismic velocities and, thus, the lack of a one-dimensional seismic signature of the spin crossover. The spin state transition does, however, influence shear anisotropy of ferropericlase and should contribute to the seismic shear wave anisotropy of the lower mantle.

3.
Phys Rev Lett ; 93(9): 095502, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15447111

RESUMEN

We have measured the isothermal equation of state (EOS) of osmium to 75 GPa under hydrostatic conditions at room temperature using angle-dispersive x-ray diffraction. A least-squares fit of this data using a third-order Birch-Murnaghan EOS yields an isothermal bulk modulus K0=411+/-6 GPa, showing osmium is more compressible than diamond. Most importantly, we have documented an anomaly in the compressibility around 25 GPa associated with a discontinuity in the first pressure derivative of the c/a ratio. This discontinuity plausibly arises from the collapse of the small hole-ellipsoid in the Fermi surface near the L point.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA