RESUMEN
The effects of emerging contaminants on environmental health are of high concern, especially those potentially induced by mixtures. We assessed single and composite mixtures of triclosan (T), 17ß-estradiol (E2), sulfamethoxazole (SMX), and nicotine (N) at various concentrations, on neonates of Daphnia magna. When used in single exposure, T and N induced high toxicity (100% immobility, each one), compared to SMX and E2 (2.5% and 10% immobility, respectively). When T, E2, SMX and N were in mixture, T had the highest contribution to the overall toxicity in mixture exposures. The N toxicity lowered when in a fourfold exposure (85% immobility in fourfold exposure). Due to the high toxicity of T and N, both alone and in the mixtures, our results can serve as a warning about the use of these substances and their release in the aquatic ecosystem.
Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Animales , Daphnia , Ecosistema , Contaminantes Químicos del Agua/análisis , Triclosán/toxicidad , SulfametoxazolRESUMEN
This investigation evaluated the bioaccumulation potential of the tropical estuarine bivalve Anomalocardia flexuosa for trace metals. To this aim, chemical and sedimentological analyses and bioaccumulation tests were performed. The sediments were mainly composed by fine-sands and mud, with variable levels of organic matter and CaCO3. Muddy sediments from a depositional site (P2) presented the highest concentrations of metals, despite SEM/AVS not indicating bioavailability. Bioaccumulation factors showed high ratios for Cd, Ni, and Zn, while associations between the contents of mud, organic matter, CaCO3 and metals in sediments and tissues of A. flexuosa were indicated by a principal component analysis. The SEM/AVS was not effective to predict the bioavailability through dissolved metals. The results showed that contaminants were bioavailable, while the performed bioaccumulation test proved to be a reliable technique for assessing sediment contamination in estuarine regions. Moreover, A. flexuosa was considered an adequate test organism for bioaccumulation studies.
Asunto(s)
Bivalvos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Bioacumulación , Monitoreo del Ambiente , Sedimentos Geológicos , Metales/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.
Asunto(s)
Sedimentos Geológicos/química , Minería , Contaminantes Químicos del Agua/metabolismo , Animales , Biomarcadores/metabolismo , Bivalvos/enzimología , Bivalvos/metabolismo , Brasil , Agua Dulce , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidadRESUMEN
The whole-sediment Toxicity Identification Evaluation (TIE) approach is a useful technique that allows for the identification of the contaminants responsible for the toxicity of complex sediment samples. This study aimed to compare the effectiveness of this technique in identifying the causes of toxicity when the test organism used in the toxicity test is capable of ingesting sediment particles. Two forms of exposure were compared: whole-sediment (WS), which integrates dermic and dietary exposures; and sediment-water interface (SWI), which involves dermic exposure only. The combined analysis of the TIE experiments revealed that metals, ammonia and, at one station, organic compounds, were responsible for sediment toxicity. The integrated use of WS and SWI TIE manipulations provided a more complete overview of the causes of toxicity, and thus enabled a better comprehension of complex contamination situations and, consequently, a better ecological assessment.